Genetic Algorithm and Direct Search

Toolbox
For Use with MATLAB®

Computation
Visualization

Programming

User’s Guide _.‘\The MathWorks

Version 1

X L8

How to Contact The MathWorks:

www . mathworks.com
comp.soft-sys.matlab

support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

Web
Newsgroup

Technical support

Product enhancement suggestions

Bug reports

Documentation error reports

Order status, license renewals, passcodes
Sales, pricing, and general information

508-647-7000 Phone
508-647-7001 Fax
The MathWorks, Inc. Mail

3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Genetic Algorithm and Direct Search Toolbox User’s Guide
© COPYRIGHT 2004 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.
Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: January 2004 Online only New for Version 1.0 (Release 13SP1+)

Introducing the Genetic Algorithm
and Direct Search Toolbox

What Is the Genetic Algorithm and Direct Search
ToolboX? e 1-2

Related Products 1-3
Writing an M-File for the Function You Want to Optimize 1-5

Example — Writingan M-File 1-5
Maximizing Versus Minimizing 1-6

Getting Started with the Genetic Algorithm

2

What Is the Genetic Algorithm? 2-2
Using The Genetic Algorithm 2-3
Calling the Function ga at the Command Line 2-3
Using the Genetic Algorithm Tool 2-4
Example: Rastrigin’s Function 2-6
Rastrigin’s Function 2-6
Finding the Minimum of Rastrigin’s Function 2-8
Finding the Minimum from the Command Line 2-10
Displaying Plots 2-11
Some Genetic Algorithm Terminology 2-15
Fitness Functions 2-15
Individuals 2-15
Populations and Generations 2-15
Diversity 2-16
Fitness Values and Best Fitness Values 2-16
Parents and Children 2-17

Contents

iii

iv

Contents

How the Genetic Algorithm Works 2-18

Outline of the Algorithm 2-18
Initial Population, 2-19
Creating the Next Generation 2-20
Plots of Later Generations 2-23
Stopping Conditions for the Algorithm 2-24

Getting Started with Direct Search

3|

What Is Direct Search? 3-2
Performing a Pattern Search 3-3
Calling patternsearch at the Command Line 3-3
Using the Pattern Search Tool 3-3
Example: Finding the Minimum of a Function 3-6
Objective Function i, 3-6
Finding the Minimum of the Function 3-7
Plotting the Objective Function Values and Mesh Sizes 3-8
Pattern Search Terminology 3-10
Patterns 3-10
Meshes ... 3-11
Polling 3-12
How Pattern SearchWorks 3-13
Iterations 1 and 2: Successful Polls 3-13
Iteration 4: An Unsuccessful Poll 3-16
Displaying the Results at Each Iteration 3-17
More Iterationsot e e 3-17
Stopping Conditions for the Pattern Search 3-18

Using the Genetic Algorithm

4|

Overview of the Genetic Algorithm Tool 4-2
Opening the Genetic Algorithm Tool 4-2
Defining a Problem in the Genetic Algorithm Tool 4-3
Running the Genetic Algorithm 4-4
Pausing and Stopping the Algorithm 4-5
Displaying Plots 4-7
Example — Creating a Custom Plot Function 4-8
Reproducing Your Results 4-11
Setting Options for the Genetic Algorithm 4-11
Importing and Exporting Options and Problems 4-13
Example — Resuming the Genetic Algorithm from the
Final Population: 4-16
Generatingan M-File 4-20

Using the Genetic Algorithm from the Command Line ... 4-21
Running the Genetic Algorithm with the Default Options ... 4-21

Setting Options 4-22
Using Options and Problems from the Genetic Algorithm
o0l .. 4-24
Reproducing Your Results 4-25
Resuming ga from the Final Population of a Previous Run .. 4-26
Running ga froman M-File 4-26
Setting Options for the Genetic Algorithm 4-29
Diversity 4-29
Population Options 4-30
Fitness Scaling Options 4-34
Selection Options 4-38
Reproduction Options 4-39
Mutation and CroSsoveroueeiuueennnn.. 4-39
Mutation Options0 ... 4-40
The Crossover Fraction 4-42
Comparing Results for Varying Crossover Fractions 4-45
Example — Global Versus Local Minima 4-47
Setting the Maximum Number of Generations 4-51
Using a Hybrid Function 4-53

Vectorize Option i 4-55

Using Direct Search

5]

Overview of the Pattern SearchTool 5-2
Opening the Pattern Search Tool 5-2
Defining a Problem in the Pattern Search Tool 5-3
Running a Pattern Search 5-5
Example — A Constrained Problem 5-6
Pausing and Stopping the Algorithm 5-8
Displaying Plots 5-8
Setting Options 5-9
Importing and Exporting Options and Problems 5-10
Generate M-File 5-13

Performing a Pattern Search from the Command Line .. 5-14
Performing a Pattern Search with the Default Options 5-14
Setting Options 5-16
Using Options and Problems from the Pattern Search Tool .. 5-18

Setting Pattern Search Options 5-19
Poll Method i 5-19
Complete Poll 5-21
Using a Search Method 5-25
Mesh Expansion and Contraction 5-28
Mesh Accelerator i 5-33
Cache Options 5-35
Setting Tolerances for the Solver 5-37

Function Reference

6

Functions — Listed by Category 6-2
Genetic Algorithm 6-2
Direct Search 6-2

Genetic Algorithm Options 6-3
Plot Options i e 6-4

vi Contents

Population Options i .. 6-5

Fitness Scaling Options, 6-7
Selection Optionsc.iiiiiiiii e, 6-8
Reproduction Options 6-10
Mutation Options0 ... 6-10
Crossover Optionsciiiiiieneeennninnnnn.. 6-12
Migration Optionsc0iiiiiiiiiinnnn... 6-15
Output FunctionOptions, 6-16
Stopping Criteria Optionscoiin.... 6-17
Hybrid FunctionOption 6-17
Vectorize Option i 6-17
The State Structure 6-18
Pattern Search Options 6-19
Plot Options i i 6-20
Poll Options i 6-20
Search Options 6-22
Mesh Options 6-24
Cache Optionsttt 6-25
Stopping Criteriacuiitiii ... 6-25
Output FunctionOptions 6-26
Display to Command Window Options 6-26
Vectorize Option i 6-27
Functions — Alphabetical List 6-28
Index

vii

viil Contents

Introducing the Genetic
Algorithm and Direct

Search Toolbox

What Is the Genetic Algorithm and
Direct Search Toolbox? (p. 1-2)

Related Products (p. 1-3)

Writing an M-File for the Function You
Want to Optimize (p. 1-5)

Introduces the toolbox and its features.

Lists products that are relevant to the kinds of tasks you
can perform with the Genetic Algorithm and Direct
Search Toolbox.

Explains how to solve maximization as well as
minimization problems using the toolbox.

1 Introducing the Genetic Algorithm and Direct Search Toolbox

What Is the Genetic Algorithm and Direct Search Toolbox?

The Genetic Algorithm and Direct Search Toolbox is a collection of functions
that extend the capabilities of the Optimization Toolbox and the MATLAB®
numeric computing environment. The Genetic Algorithm and Direct Search
Toolbox includes routines for solving optimization problems using

® Genetic algorithm
® Direct search

These algorithms enable you to solve a variety of optimization problems that
lie outside the scope of the standard Optimization Toolbox.

All the toolbox functions are MATLAB M-files, made up of MATLAB
statements that implement specialized optimization algorithms. You can view
the MATLAB code for these functions using the statement

type function_name

You can extend the capabilities of the Genetic Algorithm and Direct Search
Toolbox by writing your own M-files, or by using the toolbox in combination
with other toolboxes, or with MATLAB or Simulink®.

Related Products

Related Products

The MathWorks provides several products that are relevant to the kinds of
tasks you can perform with the Genetic Algorithm and Direct Search Toolbox.
For more information about any of these products, see either

¢ The online documentation for that product, if it is installed or if you are
reading the documentation from the CD

® The MathWorks Web site, at http: //www.mathworks.com; see the “products”

section

Note The following toolboxes all include functions that extend the
capabilities of MATLAB. The blocksets all include blocks that extend the

capabilites of Simulink.

Product

Description

Curve Fitting Toolbox

Data Acquisition Toolbox
Database Toolbox
Financial Time Series
Toolbox

Financial Toolbox
GARCH Toolbox

LMI Control Toolbox

Neural Network Toolbox

Perform model fitting and analysis

Acquire and send out data from plug-in data
acquisition boards

Exchange data with relational databases

Analyze and manage financial time-series data

Model financial data and develop financial
analysis algorithms

Analyze financial volatility using univariate
GARCH models

Design robust controllers using convex
optimization techniques

Design and simulate neural networks

1 Introducing the Genetic Algorithm and Direct Search Toolbox

14

Product

Description

Nonlinear Control
Design Blockset

Optimization Toolbox

Signal Processing
Toolbox

Simulink

Spline Toolbox
Statistics Toolbox
Symbolic/Extended

Symbolic Math Toolbox

System Identification
Toolbox

Optimize design parameters in nonlinear
control systems

Solve standard and large-scale optimization
problems

Perform signal processing, analysis, and
algorithm development

Design and simulate continuous- and
discrete-time systems

Create and manipulate spline approximation
models of data

Apply statistical algorithms and probability
models

Perform computations using symbolic
mathematics and variable-precision arithmetic

Create linear dynamic models from measured
input-output data

Writing an MFile for the Function You Want to Optimize

Writing an M-File for the Function You Want to Optimize

To use the Genetic Algorithm and Direct Search Toolbox, you must first write
an M-file that computes the function you want to optimize. The M-file should
accept a row vector, whose length is the number of independent variables for
the objective function, and return a scalar. This section explains how to write
the M-file and covers the following topics:

* “Example — Writing an M-File” on page 1-5

¢ “Maximizing Versus Minimizing” on page 1-6

Example — Writing an M-File
The following example shows how to write an M-file for the function you want
to optimize. Suppose that you want to minimize the function

2 2
flxy, x9) = x7 —2xx5 + 6x; + x5 — 6,

The M-file that computes this function must accept a row vector x of length 2,
corresponding to the variables x; and x9, and return a scalar equal to the value
of the function at x. To write the M-file, do the following steps:

1 Select New in the MATLAB File menu.
2 Select M-File. This opens a new M-file in the editor.

3 In the M-file, enter the following two lines of code:

function z = my_fun(x)
z = x(1)%2 - 2*x(1)*x(2) + 6*x(1) + x(2)"2 - 6*x(2);

4 Save the M-file in a directory on the MATLAB path.

To check that the M-file returns the correct value, enter

my_fun([2 3])
ans =

-5

1 Introducing the Genetic Algorithm and Direct Search Toolbox

1-6

Note Do not use the Editor/Debugger to debug the M-file for the objective
function while running the Genetic Algorithm Tool or the Pattern Search Tool.
Doing so results in Java exception messages in the Command Window and
makes debugging more difficult. See either “Defining a Problem in the Genetic
Algorithm Tool” on page 4-3 or “Defining a Problem in the Pattern Search
Tool” on page 5-3 for more information on debugging.

Maximizing Versus Minimizing
The optimization functions in the Genetic Algorithm and Direct Search

Toolbox minimize the objective or fitness function. That is, they solve problems
of the form

minimize [f(x)
X
If you want to maximize f{x), you can do so by minimizing -f(x), because the

point at which the minimum of -f{x) occurs is the same as the point at which
the maximum of flx) occurs.

For example, suppose you want to maximize the function
f = x2-2 +6x,+x2-6
(1, Xg) = X9 —221%9 + 627 T 29— 6ixg

described in the preceding section. In this case, you should write your M-file to
compute

2 2
—f(xq, Xx9) = —x7]+2x7x5—6x; —x5 + 6xy

and minimize this function.

Getting Started with the
Genetic Algorithm

What Is the Genetic Algorithm? (p. 2-2) Introduces the genetic algorithm.
Using The Genetic Algorithm (p. 2-3) Explains how to use the genetic algorithm tool.

Example: Rastrigin’s Function (p. 2-6) Presents an example of solving an optimization problem
using the genetic algorithm.

Some Genetic Algorithm Terminology Explains some basic terminology for the genetic
(p. 2-15) algorithm.

How the Genetic Algorithm Works Presents an overview of how the genetic algorithm works.
(p. 2-18)

2 Cetting Started with the Genetic Algorithm

2-2

What Is the Genetic Algorithm?

The genetic algorithm is a method for solving optimization problems that is
based on natural selection, the process that drives biological evolution. The
genetic algorithm repeatedly modifies a population of individual solutions. At
each step, the genetic algorithm selects individuals at random from the current
population to be parents and uses them produce the children for the next
generation. Over successive generations, the population “evolves” toward an
optimal solution. You can apply the genetic algorithm to solve a variety of
optimization problems that are not wellsuited for standard optimization
algorithms, including problems in which the objective function is
discontinuous, nondifferentiable, stochastic, or highly nonlinear.

The genetic algorithm uses three main types of rules at each step to create the
next generation from the current population:

® Selection rules select the individuals, called parents, that contribute to the
population at the next generation.

® Crossover rules combine two parents to form children for the next generation.

® Mutation rules apply random changes to individual parents to form children.

The genetic algorithm differs from a standard optimization algorithm in two
main ways, as summarized in the following table.

Standard Algorithm Genetic Algorithm

Generates a single point at each Generates a population of points at
iteration. The sequence of points each iteration. The population
approaches an optimal solution. approaches an optimal solution.
Selects the next point in the Selects the next population by
sequence by a deterministic computations that involve random
computation. choices.

Using The Genetic Algorithm

Using The Genetic Algorithm

There are two ways you can use the genetic algorithm with the toolbox:

¢ Calling the genetic algorithm function ga at the command line.

¢ Using the Genetic Algorithm Tool, a graphical interface to the genetic
algorithm.

This section provides a brief introduction to these methods.

Calling the Function ga at the Command Line

To use the genetic algorithm at the command line, call the genetic algorithm
function ga with the syntax

[x fval] = ga(@fitnessfun, nvars, options)
where

e @fitnessfun is a handle to the fitness function.

® nvars is the number of independent variables for the fitness function.

® options is a structure containing options for the genetic algorithm. If you do
not pass in this argument, ga uses its default options.

The results are given by

¢ fval — Final value of the fitness function

¢ x — Point at which the final value is attained
Using the function ga is convenient if you want to

¢ Return results directly to the MATLAB workspace
® Run the genetic algorithm multiple times with different options, by calling
ga from an M-file

“Using the Genetic Algorithm from the Command Line” on page 4-21 provides
a detailed description of using the function ga and creating the options
structure.

2-3

2 Cetting Started with the Genetic Algorithm

2-4

Using the Genetic Algorithm Tool

The Genetic Algorithm Tool is a graphical user interface that enables you to
use the genetic algorithm without working at the command line. To open the
Genetic Algorithm Tool, enter

gatool

This opens the tool as shown in the following figure.

Enter fitness function.

Enter number of variables —

for the fitness function.

Start the genetic
algorithm.

Results are

Click to display descriptions of options.

ISR
File Help
Fitness function: I— Options: ==
Mumher of variables: | [=] Population
~Plot Fopulation type: |D0ub|e Wector LI
Flot interval: |1 Fopulation size: |20
[Bestfitness [Bestindividual [Distance Creation function: {Unifarm |

[Expectation [| Genealogy [Range

[Seore diversity [Scores I/ Selection Initial population: |{
[Stopping
Initial scores: o
[Custom function: I
Initial range: jio; 1]
~Run solvet

[0 Use randarm states fram previous rin

I gtanl Fause) | Stop |

Current generation: I

Status and results:

Fithess scaling

Selection

Reproduction

displayed here.

Mutation

Crossover

Migration

Final paint:

Qutput function

| Stapping criteria

Hybrid function

Wectorize

Export to Workspace...

Using The Genetic Algorithm

To use the Genetic Algorithm Tool, you must first enter the following
information:

¢ Fitness function — The objective function you want to minimize. Enter the
fitness function in the form @fitnessfun, where fitnessfun.mis an M-file
that computes the fitness function. “Writing an M-File for the Function You
Want to Optimize” on page 1-5 explains how write this M-file. The @ sign
creates a function handle to fitnessfun.

¢ Number of variables — The length of the input vector to the fitness
function. For the function my fun described in “Writing an M-File for the
Function You Want to Optimize” on page 1-5, you would enter 2.

To run the genetic algorithm, click the Start button. The tool displays the
results of the optimization in the Status and Results pane.

You can change the options for the genetic algorithm in the Options pane. To
view the options in one of the categories listed in the pane, click the + sign next
to it.

For more information,

® See “Overview of the Genetic Algorithm Tool” on page 4-2 for a detailed
description of the tool.

* See “Example: Rastrigin’s Function” on page 2-6 for an example of using the
tool.

2-5

2 Cetting Started with the Genetic Algorithm

Example: Rastrigin’s Function

This section presents an example that shows how to find the minimum of
Rastrigin’s function, a function that is often used to test the genetic algorithm.
This section covers the following topics:

¢ “Rastrigin’s Function” on page 2-6
* “Finding the Minimum of Rastrigin’s Function” on page 2-8

* “Displaying Plots” on page 2-11

Rastrigin’s Function

For two independent variables, Rastrigin’s function is defined as
Ras(x) = 20 + x? +x§ —10(cos2mx; + cos2mx,)

The toolbox contains an M-file, rastriginsfcn.m, that computes the values of
Rastriginsfcn. The following figure shows a plot of Rastrigin’s function.

2-6

Example: Rastrigin’s Function

Global minimum ot [0 0]

As the plot shows, Rastrigin’s function has many local minima — the “valleys”
in the plot. However, the function has just one global minimum, which occurs
at the point [0 0] in the x-y plane, as indicated by the vertical line in the plot,
where the value of the function is 0. At any local minimum other than [0 0], the
value of Rastrigin’s function is greater than 0. The farther the local minimum
is from the origin, the larger the value of the function is at that point.

Rastrigin’s function is often used to test the genetic algorithm, because its
many local minima make it difficult for standard, gradient-based methods to
find the global minimum.

The following contour plot of Rastrigin’s function shows the alternating
maxima and minima.

2 Cetting Started with the Genetic Algorithm

2-8

o.: y

0.6

0.4

.

Local maxima

~0.4r Local minima

-0.6F

BN

Global minimum at [0 0]

Finding the Minimum of Rastrigin’s Function

This section explains how to find the minimum of Rastrigin’s function using the
genetic algorithm.

Note Because the genetic algorithm uses random data to perform its search,
the algorithm returns slightly different results each time you run it.

To find the minimum, do the following steps:
1 Enter gatool at the command line to open the Genetic Algorithm Tool.

2 Enter the following in the Genetic Algorithm Tool:
= In the Fitness function field, enter @rastriginsfcn.

= In the Number of variables field, enter 2, the number of independent
variables for Rastrigin’s function.

Example: Rastrigin’s Function

The Fitness function and Number of variables fields should appear as shown
in the following figure.

Fitness function: I@rastriginsfcn
MNumber of variables: |2

3 Click the Start button in the Run solver pane, as shown in the following
figure.

Fun salver
-
Click the Start button —— o | |

Current generation: I

While the algorithm is running, the Current generation field displays the
number of the current generation. You can temporarily pause the algorithm by
clicking the Pause button. When you do so, the button name changes to
Resume. To resume the algorithm from the point at which you paused it, click
Resume.

When the algorithm is finished, the Status and results pane appears as shown
in the following figure.

Status and results:

GA running.

Gh terminated.

Fitness function value: 0.0067749206244555025
Optimization terminated:

Fitness function value at final point

naxipam number of generations exceeded.

Final point:
1 2
0.00274 -0.00516 Final point

The Status and results pane displays the following information:

2-9

2 Cetting Started with the Genetic Algorithm

2-10

® The final value of the fitness function when the algorithm terminated:
Function value: 0.0067749206244585025

Note that the value shown is very close to the actual minimum value of
Rastrigin’s function, which is 0. “Setting Options for the Genetic Algorithm”
on page 4-29 describes some ways to get a result that is closer to the actual
minimum.

® The reason the algorithm terminated.

Exit: Optimization terminated:
maximum number of generations exceeded.

In this example, the algorithm terminates after 100 generations, the default
value of the option Generations, which specifies the maximum number of
generations the algorithm computes.

¢ The final point, which in this example is [0.00274 -0.00516].

Finding the Minimum from the Command Line
To find the minimum of Rastrigin’s function from the command line, enter

[x fval reason] ga(@rastriginsfcn, 2)

This returns

[x fval reason] = ga(@rastriginsfcn, 2)

0.0027 -0.0052

fval =

0.0068

reason =

Optimization terminated:
maximum number of generations exceeded.

Example: Rastrigin’s Function

where

¢ x is the final point returned by the algorithm.
e fval is the fitness function value at the final point.
® reason is the reason that the algorithm terminated.

Displaying Plots

The Plots pane enables you to display various plots that provide information
about the genetic algorithm while it is running. This information can help you
change options to improve the performance of the algorithm. For example, to
plot the best and mean values of the fitness function at each generation, select
the box next to Best fitness value, as shown in the following figure.

Flots

Plotinterval: [t

Select Best fitness v 8 i [Bestindividual [Distance
[Expectation [Genealogy [Range
[Score diversity [Scores [Selection
[Stopping

[Custorn function: I

When you click Start, the Genetic Algorithm Tool displays a plot of the best
and mean values of the fitness function at each generation. When the
algorithm stops, the plot appears as shown in the following figure.

2-11

2 Cetting Started with the Genetic Algorithm

2-12

Best: 0.0067796 Mean: 0.014788
18¢

16f
14t

12+

.........
0 1 i i i i i i i It

. I 10 20 30 40 50 60 70 80 90 100
generation

The points at the bottom of the plot denote the best fitness values, while the
points above them denote the averages of the fitness values in each generation.
The plot also displays the best and mean values in the current generation
numerically at the top.

To get a better picture of how much the best fitness values are decreasing, you
can change the scaling of the y-axis in the plot to logarithmic scaling. To do so,

1 Select Axes Properties from the Edit menu in the plot window to open the
Property Editor, as shown in the following figure.

Example: Rastrigin’s Function

F7 Property Editor - Axes

. Edit Properties far: |axes: j ¢ 9
Click the Y tab, ———— ! |y
% ¥ | 2| ste | aspect | Liohts | viewnoint | o |
Label: IFitnessvaIue Propenies...l
Color: IEIIack LI Custom color...l
Locatian: ILeﬂ |
Grid: [~ Show
Limits: I auto 000 100.00
Ticks: I Auto |[u.nu1u 0.01011.010.0100.0]
Labels: W Auto 3 i’
2
1 =
Scale: © Linear Marmal
Select Log————————— & 1oy ' Reverse
Ok Cancel Apply Help |
¥ Immediate apply

=0l x|

2 Click the Y tab.

3 In the Scale pane, select Log.

The plot now appears as shown in the following figure.

2-13

2 Cetting Started with the Genetic Algorithm

Best: 0.0067796 Mean: 0.014788

10" ¢

107 p

-1

10

dp | 10 20 30 40 50 60

generation

Typically, the best fitness value improves rapidly in the early generations,
when the individuals are farther from the optimum. The best fitness value
improves more slowly in later generations, whose populations are closer to the

optimal point.

2-14

Some Genetic Algorithm Terminology

Some Genetic Algorithm Terminology

This section explains some basic terminology for the genetic algorithm,
including

¢ “Fitness Functions” on page 2-15

¢ “Individuals” on page 2-15

® “Populations and Generations” on page 2-15

* “Fitness Values and Best Fitness Values” on page 2-16

¢ “Parents and Children” on page 2-17

Fithness Functions

The fitness function is the function you want to optimize. For standard
optimization algorithms, this is known as the objective function. The toolbox
tries to find the minimum of the fitness function.

You can write the fitness function as an M-file and pass it as an input argument
to the main genetic algorithm function.

Individuals

An individual is any point to which you can apply the fitness function. The
value of the fitness function for an individual is its score. For example, if the
fitness function is

flxy, %o, xg) = (20 + 1)7+ (x5 +4)° + (x5 2)°

the vector (2, 3, 1), whose length is the number of variables in the problem, is
an individual. The score of the individual (2, 3, 1) is (2, -3, 1) = 51.

An individual is sometimes referred to as a genome and the vector entries of an
individual as genes.

Populations and Generations

A population is an array of individuals. For example, if the size of the
population is 100 and the number of variables in the fitness function is 3, you
represent the population by a 100-by-3 matrix. The same individual can appear

2-15

2 Cetting Started with the Genetic Algorithm

2-16

more than once in the population. For example, the individual (2, 3, 1) can
appear in more than one row of the array.

At each iteration, the genetic algorithm performs a series of computations on
the current population to produce a new population. Each successive
population is called a new generation.

Diversity

Diversity refers to the average distance between individuals in a population. A
population has high diversity if the average distance is large; otherwise it has
low diversity. In the following figure, the population on the left has high
diversity, while the population on the right has low diversity.

5 ; .
+ | + High diversity
al n - Low diversity |
+
+
3t .
+ .
)| T + B |
+
+
1t H + :
+
+
0 L+ . .
0 2 4 6 8

Diversity is essential to the genetic algorithm because it enables the algorithm
to search a larger region of the space.

Fitness Values and Best Fitness Values

The fitness value of an individual is the value of the fitness function for that
individual. Because the toolbox finds the minimum of the fitness function, the

Some Genetic Algorithm Terminology

best fitness value for a population is the smallest fitness value for any
individual in the population.

Parents and Children

To create the next generation, the genetic algorithm selects certain individuals
in the current population, called parents, and uses them to create individuals
in the next generation, called children. Typically, the algorithm is more likely
to select parents that have better fitness values.

2-17

2 Cetting Started with the Genetic Algorithm

How the Genetic Algorithm Works

This section provides an overview of how the genetic algorithm works. This
section covers the following topics:

® “Outline of the Algorithm” on page 2-18

® “Initial Population” on page 2-19

® “Creating the Next Generation” on page 2-20

® “Plots of Later Generations” on page 2-23

® “Stopping Conditions for the Algorithm” on page 2-24

Outline of the Algorithm

The following outline summarizes how the genetic algorithm works:
1 The algorithm begins by creating a random initial population.

2 The algorithm then creates a sequence of new populations, or generations.
At each step, the algorithm uses the individuals in the current generation to
create the next generation. To create the new generation, the algorithm
performs the following steps:

a Scores each member of the current population by computing its fitness
value.

b Scales the raw fitness scores to convert them into a more usable range of
values.

¢ Selects parents based on their fitness.

d Produces children from the parents. Children are produced either by
making random changes to a single parent — mutation — or by
combining the vector entries of a pair of parents — crossover.

e Replaces the current population with the children to form the next
generation.

3 The algorithm stops when one of the stopping criteria is met. See “Stopping
Conditions for the Algorithm” on page 2-24.

2-18

How the Genetic Algorithm Works

Initial Population

The algorithm begins by creating a random initial population, as shown in the
following figure.

In this example, the initial population contains 20 individuals, which is the
default value of Population size in the Population options. Note that all the
individuals in the initial population lie in the upper-right quadrant of the
picture, that is, their coordinates lie between 0 and 1, because the default value
of Initial range in the Population options is [0;1].

If you know approximately where the minimal point for a function lies, you
should set Initial range so that the point lies near the middle of that range.
For example, if you believe that the minimal point for Rastrigin’s function is
near the point [0 0], you could set Initial range to be [-1;1]. However, as this
example shows, the genetic algorithm can find the minimum even with a less
than optimal choice for Initial range.

2-19

2 Cetting Started with the Genetic Algorithm

2-20

Creating the Next Generation

At each step, the genetic algorithm uses the current population to create the
children that make up the next generation. The algorithm selects a group of
individuals in the current population, called parents, who contribute their
genes — the entries of their vectors — to their children. The algorithm usually
selects individuals that have better fitness values as parents. You can specify
the function that the algorithm uses to select the parents in the Selection
function field in the Selection options.

The genetic algorithm creates three types of children for the next generation:

¢ Elite children are the individuals in the current generation with the best
fitness values. These individuals automatically survive to the next
generation.

e Crossover children are created by combining the vectors of a pair of parents.

® Mutation children are created by introducing random changes, or mutations,
to a single parent.

The following schematic diagram illustrates the three types of children.

H_-H

Elite child

\.

Crossover (hl|d

4>
Mutation child

How the Genetic Algorithm Works

“Mutation and Crossover” on page 4-39 explains how to specify the number of
children of each type that the algorithm generates and the functions it uses to
perform crossover and mutation.

The following sections explain how the algorithm creates crossover and
mutation children.

Crossover Children

The algorithm creates crossover children by combining pairs of parents in the
current population. At each coordinate of the child vector, the default crossover
function randomly selects an entry, or gene, at the same coordinate from one of
the two parents and assigns it to the child.

Mutation Children

The algorithm creates mutation children by randomly changing the genes of
individual parents. By default, the algorithm adds a random vector from a
Gaussian distribution to the parent.

The following figure shows the children of the initial population, that is, the
population at the second generation, and indicates whether they are elite,
crossover, or mutation children.

2-21

2 Getting Started with the Genetic Algorithm

[y

o/ NI N
OO ©)

-0.6f @ @ @ :
O Elite children
-0.8F| x Crossover children ?/\ /’
A Mutation children /
-1 T T 1 N T T N | m |
0.5 1 1.5

-1 -0.5 0 2

2-22

How the Genetic Algorithm Works

Plots of Later Generations
The following figure shows the populations at iterations 60, 80, 95, and 100.

Iteration 60 Iteration 80
/ \ /
/ AN /
08F ,,//” \\\\ ,,/"/
0.6F *
0.4f
02F -
\\\ /// \\\
ot))
/ \ /
"/ N\ "/
02, PR %
-0.4+ *
* *
—0.6F 1
s - N]
N\ / /‘\ N\ /\ N / /
-1 -0.5 0 0.5 0 0.5 1

Iteration 95 Iteration 100
T 7 T T

N\

2-23

2 Cetting Started with the Genetic Algorithm

2-24

As the number of generations increases, the individuals in the population get
closer together and approach the minimum point [0 0].

Stopping Conditions for the Algorithm

The genetic algorithm uses the following five conditions to determine when to
stop:

® Generations — The algorithm stops when the number of generations
reaches the value of Generations.

¢ Time limit — The algorithm stops after running for an amount of time in
seconds equal to Time limit.

¢ Fitness limit — The algorithm stops when the value of the fitness function
for the best point in the current population is less than or equal to Fitness
limit.

® Stall generations — The algorithm stops if there is no improvement in the
objective function for a sequence of consecutive generations of length Stall
generations.

e Stall time limit — The algorithm stops if there is no improvement in the
objective function during an interval of time in seconds equal to Stall time
limit.

The algorithm stops as soon as any one of these five conditions is met. You can

specify the values of these criteria in the Stopping criteria options in the

Genetic Algorithm Tool. The default values are shown in the figure below.

|__= stopping criteria |

Generatians: oo
Tirne limit: Jinf
Fitness limit: Finf

Stall generations: |5I:I

Stall time limit: |20

When you run the genetic algorithm, the Status panel displays the criterion
that caused the algorithm to stop.

The options Stall time limit and Time limit prevent the algorithm from
running too long. If the algorithm stops due to one of these conditions, you

How the Genetic Algorithm Works

might improve your results by increasing the values of Stall time limit and
Time limit.

2-25

2 Cetting Started with the Genetic Algorithm

2-26

Getting Started with

Direct Search

What Is Direct Search? (p. 3-2)
Performing a Pattern Search (p. 3-3)

Example: Finding the Minimum of a
Function (p. 3-6)

Pattern Search Terminology (p. 3-10)
How Pattern Search Works (p. 3-13)

Plotting the Objective Function Values
and Mesh Sizes (p. 3-8)

Introduces direct search and pattern search.

Explains the main function in the toolbox for performing
pattern search.

Provides an example of solving an optimization problem
using pattern search.

Explains some basic pattern search terminology.
Provides an overview of direct search algorithms.

Shows how to plot the objective function values and mesh
sizes of the sequence of points generated by the pattern
search.

3 Getting Started with Direct Search

3-2

What Is Direct Search?

Direct search is a method for solving optimization problems that does not
require any information about the gradient of the objective function. As
opposed to more traditional optimization methods that use information about
the gradient or higher derivatives to search for an optimal point, a direct
search algorithm searches a set of points around the current point, looking for
one where the value of the objective function is lower than the value at the
current point. You can use direct search to solve problems for which the
objective function is not differentiable, or even continuous.

The Genetic Algorithm and Direct Search Toolbox implements a special class
of direct search algorithms called pattern search algorithms. A pattern search
algorithm computes a sequence of points that get closer and closer to the
optimal point. At each step, the algorithm searches a set of points, called a
mesh, around the current point — the point computed at the previous step of
the algorithm. The algorithm forms the mesh by adding the current point to a
scalar multiple of a fixed set of vectors called a pattern. If the algorithm finds
a point in the mesh that improves the objective function at the current point,
the new point becomes the current point at the next step of the algorithm.

Performing a Pattern Search

Performing a Pattern Search

This section provides a brief introduction to the Pattern Search Tool, a
graphical user interface (GUI) for performing a pattern search. This section
covers the following topics:

¢ “Calling patternsearch at the Command Line” on page 3-3
¢ “Using the Pattern Search Tool” on page 3-3

Calling patternsearch at the Command Line

To perform a pattern search on an unconstrained problem at the command line,
you call the function patternsearch with the syntax

[x fval] = patternsearch(@objfun, xO0)
where

® @objfun is a handle to the objective function.

® x0 is the starting point for the pattern search.
The results are given by

¢ fval — Final value of the objective function
¢ x — Point at which the final value is attained
“Performing a Pattern Search from the Command Line” on page 5-14 explains

in detail how to use the function patternsearch.

Using the Pattern Search Tool

To open the Pattern Search Tool, enter

psearchtool

This opens the tool as shown in the following figure.

3 Getting Started with Direct Search

Click to display descriptions of options

RI=TEY
File Help
Emer Obiedive fUndiOn—— Ohjective function: I Options: -
Enter start point L Start point [= Fal
Constraints: Poll method: |Positive basis 2N LI
U b ds:
[AET LIt Complete poll: |Off LI
Loweer bounds:
Linear inegualities: A= h= Folling arder: |Consecutive LI
Linear equalities: Aeg= heg=
~Plat:
Flotintereal: |1 Search
[Bestfunction value [Mesh size
[Function count [Best paint
Mesh
[Custom function: I
~Run solver
Start the pattern search —— gtan | ceee | o | Cache

Current iteration: I

Status and results: Stopping criteria

Results are displayed here

Qutput

Final paint:

Display to command window

Wectorize

Export to Workspace... |

To use the Pattern Search Tool, you must first enter the following information:

® Objective function — The objective function you want to minimize. You
enter the objective function in the form @objfun, where objfun.mis an M-file

3-4

Performing a Pattern Search

that computes the objective function. The @ sign creates a function handle to
objfun.

® Start point— The initial point at which the algorithm starts the
optimization.

You can enter constraints for the problem in the Constraints pane. If the
problem is unconstrained, leave these fields blank.

Then, click the Start button. The tool displays the results of the optimization
in the Status and results pane.

You can also change the options for the pattern search in the Options pane. To
view the options in a category, click the + sign next to it.

“Finding the Minimum of the Function” on page 3-7 gives an example of using
the Pattern Search Tool.

“Overview of the Pattern Search Tool” on page 5-2 provides a detailed
description of the Pattern Search Tool.

3-5

3 Getting Started with Direct Search

Example: Finding the Minimum of a Function

This section presents an example of using a pattern search to find the
minimum of a function. This section covers the following topics:

® “Objective Function” on page 3-6

¢ “Finding the Minimum of the Function” on page 3-7

® “Plotting the Objective Function Values and Mesh Sizes” on page 3-8

Objective Function

The example uses the objective function, ps_example, which is included in the
Genetic Algorithms and Direct Search Toolbox. You can view the code for the
function by entering

type ps_example

The following figure shows a plot of the function.

Example: Finding the Minimum of a Function

Finding the Minimum of the Function
To find the minimum of ps_example, do the following steps:

1 Enter

psearchtool
to open the Pattern Search Tool.

2 In the Objective function field of the Pattern Search Tool, enter
@ps_example.

3 In the Start point field, type [2.1 1.7].

Ohijective function: |@ps_example

Start point: fl2.11.7]

You can leave the fields in the Constraints pane blank because the problem
is unconstrained.

4 Click Start to run the pattern search.

The Status and Results pane displays the results of the pattern search.

Status and results:

Pattern search terminated. ;I
Objective function walue: -1.999999237080392

Optimization terminated:

Current Mesh size 9.537e-007 is less than 'TolMesh'.

4] >

Final paint:

1 2
-4.71234 -7.62939e-07

The minimum function value is approximately -2. The Final point pane
displays the point at which the minimum occurs.

3-7

3 Getting Started with Direct Search

3-8

Plotting the Objective Function Values and Mesh
Sizes

To see the performance of the pattern search, you can display plots of the best
function value and mesh size at each iteration. First, select the following check

boxes in the Plots pane:
® Best function value
® Mesh size

Plats

Plot ntenval: |1

¥ Best function value

[Function count [Best point

[Custom function; |

Then click Start to run the pattern search. This displays the following plots.

Example: Finding the Minimum of a Function

Best Function Value: -2

~
T .

Function value
N
T

cee

_2 [t P i i i i
0 10 20 30 40 50 60
Iteration
Current Mesh Size: 1.9073e-006
4 ~
3 .
()
N
7]
22
()
=
1 -
O I : * : * : *eaéae 1 1 1 J

n 10 20 30 40 50 60
&l Iteration

The upper plot shows the objective function value of the best point at each
iteration. Typically, the objective function values improve rapidly at the early
iterations and then level off as they approach the optimal value.

The lower plot shows the mesh size at each iteration. The mesh size increases
after each successful iteration and decreases after each unsuccessful one,
explained in “How Pattern Search Works” on page 3-13.

3-9

3 Getting Started with Direct Search

Pattern Search Terminology

3-10

This section explains some standard terminology for pattern search, including

® “Patterns” on page 3-10
® “Meshes” on page 3-11
® “Polling” on page 3-12

Patterns

A pattern is a collection of vectors that the algorithm uses to determine which
points to search at each iteration. For example, if there are two independent
variables in the optimization problem, the default pattern consists of the

following vectors.

v1=1[10]
vy = [0 1]
vg=[-10]
vy =[0-1]

The following figure shows these vectors.

Pattern Search Terminology

Default Pattern in Two Dimensions
1.5 T T T

-1.5 -1 -0.5 0 0.5 1 15

Meshes

At each step, the pattern search algorithm searches a set of points, called a
mesh, for a point that improves the objective function. The algorithm forms the
mesh by

1 Multiplying the pattern vectors by a scalar, called the mesh size

2 Adding the resulting vectors to the current point — the point with the best
objective function value found at the previous step

For example, suppose that

® The current point is [1.6 3.4].

¢ The pattern consists of the vectors
v1=1[10]
vy =1[01]

3-11

3 Getting Started with Direct Search

3-12

Ug = [-1 0]
Uy = [0 -1]

® The current mesh size is 4.

The algorithm multiplies the pattern vectors by 4 and adds them to the current
point to obtain the following mesh.

[1.6 3.4] + 4*[1 0] = [5.6 3.4]
[1.6 3.4] + 4*[0 1] = [1.6 7.4]

[1.6 3.4] + 4*[-1 0] = [-2.4 3.4]
[1.6 3.4] + 4*[0 -1] = [1.6 -0.6]

The pattern vector that produces a mesh point is called its direction.

Polling

At each step, the algorithm polls the points in the current mesh by computing
their objective function values. When option Complete poll has the default
setting Off, the algorithm stops polling the mesh points as soon as it finds a
point whose objective function value is less than that of the current point. If
this occurs, the poll is called successful and the point it finds becomes the
current point at the next iteration. Note that the algorithm only computes the
mesh points and their objective function values up to the point at which it stops
the poll. If the algorithm fails to find a point that improves the objective
function, the poll is called unsuccessful and the current point stays the same at
the next iteration.

If you set Complete poll to On, the algorithm computes the objective function
values at all mesh points. The algorithm then compares the mesh point with
the smallest objective function value to the current point. If that mesh point
has a smaller value than the current point, the poll is successful.

How Pattern Search Works

How Pattern Search Works

The pattern search algorithm finds a sequence of points, x0, x1, x2, ... , that
approaches the optimal point. The value of the objective function decreases
from each point in the sequence to the next. This section explains how pattern
search works for the function described in “Example: Finding the Minimum of
a Function” on page 3-6.

To simplify the explanation, this section describes how the pattern search
works when you set Secale to Off in Mesh options.

This section covers the following topics:

® “Tterations 1 and 2: Successful Polls” on page 3-13

e “Tteration 4: An Unsuccessful Poll” on page 3-16

® “Displaying the Results at Each Iteration” on page 3-17
® “More Iterations” on page 3-17

Iterations 1 and 2: Successful Polls

The pattern search begins at the initial point x0 that you provide. In this
example, x0 = [2.1 1.7].

lteration 1

At the first iteration, the mesh size is 1 and the pattern search algorithm adds
the pattern vectors to the initial point x0 = [2.1 1.7] to compute the
following mesh points.

[1 0] + x0 [3.1 1.7]
[0 1] + xO [2.1 2.7]
[-1 0] + x0=1[1.11.7]
[0 -1]+ x0=1[2.10.7]

The algorithm computes the objective function at the mesh points in the order
shown above. The following figure shows the value of ps_example at the initial
point and mesh points.

3-13

3 Getting Started with Direct Search

3-14

Objective Function Values at Initial Point and Mesh Points

3 T T T T
O Initial point xO
A Mesh points
A 56347 B
25+ R
2 | .
A 45146 O 4.6347 A 4782
15¢ k
1 | .
A 3.6347
05 1 1 1 1
1 \ 15 2 25 3 35

First polled point that improves the objective function

The algorithm polls the mesh points by computing their objective function
values until it finds one whose value is smaller than 4.6347, the value at x0. In
this case, the first such point it findsis [1.1 1.7], at which the value of the
objective function is 4.5146, so the poll is successful. The algorithm sets the
next point in the sequence equal to

x1 = [1.11.7]

Note By default, the pattern search algorithm stops the current iteration as
soon as it finds a mesh point whose fitness value is smaller than that of the
current point. Consequently, the algorithm might not poll all the mesh points.
You can make the algorithm poll all the mesh points by setting Complete poll
to On.

How Pattern Search Works

lteration 2

After a successful poll, the algorithm multiplies the current mesh size by 2, the
default value of Expansion factor in the Mesh options pane. Because the
initial mesh size is 1, at the second iteration the mesh size is 2. The mesh at
iteration 2 contains the following points.

2*[1 0] + x1 = [3.1 1.7]
2%[0 1] + x1 = [1.1 38.7]

2%[-1 0] + x1 = [-0.9 1.7]
2%[0 -1] + x1 = [1.1 -0.3]

The following figure shows the point x1 and the mesh points, together with the

corresponding values of ps_example.

Objective Function Values at x1 and Mesh Points
4 T T T T T T T T

T
O x1
A
350 6.5416 A Mesh points ||

251 1

A3.25 O 4.5146 A 47282
15F B

051 1

A 3.1146

05
-1 -0.5 0 0.5 1 1.5 2 25 3 3.5

The algorithm polls the mesh points until it finds one whose value is smaller
than 4.5146, the value at x1. The first such point it findsis [-0.9 1.7], at
which the value of the objective function is 3.25, so the poll is successful. The
algorithm sets the second point in the sequence equal to

x2 = [-0.9 1.7]

3-15

3 Getting Started with Direct Search

Because the poll is successful, the algorithm multiplies the current mesh size
by 2 to get a mesh size of 4 at the third iteration.

lteration 4: An Unsuccessful Poll
By the fourth iteration, the current point is

x3 = [-0.9 1.7]

and the mesh size is 8, so the mesh consists of the points

8*[1 0] + x3 = [3.1 1.7]
8*[-1 0] + x3 = [-4.9 1.7]
8*[0 1] + x3 = [-0.9 5.7]
8*[0 -1] + x3 = [-0.9 -2.3]

The following figure shows the mesh points and their objective function values.

Objective Function Values at x3 and Mesh Points

101 A 77351

O x3 4
A Mesh points

2 A 6411 O -0.2649 A 47282

-6 A 43351

-8 I I I I
-10 -5 0 5

At this iteration, none of the mesh points has a smaller objective function value
than the value at x3, so the poll is unsuccessful. In this case, the algorithm does
not change the current point at the next iteration. That is,

3-16

How Pattern Search Works

x4 = x3;

At the next iteration, the algorithm multiplies the current mesh size by 0.5, the
default value of Contraction factor in the Mesh options pane, so that the
mesh size at the next iteration is 4. The algorithm then polls with a smaller
mesh size.

Displaying the Results at Each lteration

You can display the results of the pattern search at each iteration by setting
Level of display to Iterative in Display to command window options. This
enables you to evaluate the progress of the pattern search and to make changes
to options if necessary.

With this setting, the pattern search displays information about each iteration
at the command line. The first four lines of the display are

Iter f-count MeshSize f(x) Method
0 1 1 4.635 Start iterations
1 4 2 4.515 Successful Poll
2 7 4 3.25 Successful Poll
3 10 8 -0.2649 Successful Poll
4 14 4 -0.2649 Refine Mesh

The entry Successful Poll below Method indicates that the current iteration
was successful. For example, the poll at iteration 2 successful. As a result, the
objective function value of the point computed at iteration 2, displayed below
f(x), is less than the value at iteration 1.

At iteration 4, the entry Refine Mesh below Method tells you that the poll is
unsuccessful. As a result, the function value at iteration 4 remains unchanged
from iteration 3.

Note that the pattern search doubles the mesh size after each successful poll
and halves it after each unsuccessful poll.

More lterations

The pattern search performs 88 iterations before stopping. The following plot
shows the points in the sequence computed in the first 13 iterations of the
pattern search.

3-17

3 Getting Started with Direct Search

3-18

Points at First 13 Iterations of Pattern Search

2 T T T T T T T T
3 2 1 0
15f 8
l | 4
05} .
. .13
10
O | 4
6
-05} 8
_l 1 1 1 1 1 1 1 1
% 5 -4 -3 -2 -1 0 1 2 3

The numbers below the points indicate the first iteration at which the
algorithm finds the point. The plot only shows iteration numbers
corresponding to successful polls, because the best point doesn’t change after
an unsuccessful poll. For example, the best point at iterations 4 and 5 is the
same as at iteration 3.

Stopping Conditions for the Pattern Search

This section describes the criteria for stopping the pattern search algorithm.
These criteria are listed in the Stopping criteria section of the Pattern Search
Tool, as shown in the following figure.

How Pattern Search Works

SN TG RAGEE) i|2]
Mesh tolerance: |1 e-006
ax iteration: |1DD*number0fvariabIes

Max function evaluations: |2000*number0fvariables
Bind tolerance: |D.DD1
Htolerance: |1 e-006

Function tolerance: |1 e-006

The algorithm stops when any of the following conditions occurs:

® The mesh size is less than Mesh tolerance.

¢ The number of iterations performed by the algorithm reaches the value of

Max iteration.

¢ The total number of objective function evaluations performed by the

algorithm reaches the value of Max function evaluations.

¢ The distance between the point found at one successful poll and the point

found at the next successful poll is less than X tolerance.

¢ The change in the objective function from one successful poll to the next

successful poll is less than Function tolerance.

The Bind tolerance option, which is used to identify active constraints for

constrained problems, is not used as a stopping criterion.

3-19

3 Getting Started with Direct Search

3-20

Using the Genetic
Algorithm

“Overview of the Genetic Algorithm Provides an overview of the Genetic Algorithm Tool.
Tool” on page 4-2

Using the Genetic Algorithm from the Describes how to use the genetic algorithm at the
Command Line (p. 4-21) command line.

Setting Options for the Genetic Explains how to set options for the genetic algorithm.
Algorithm (p. 4-29)

4 Using the Genetic Algorithm

Overview of the Genetic Algorithm Tool

The section provides an overview of the Genetic Algorithm Tool. This section
covers the following topics:

® “Opening the Genetic Algorithm Tool” on page 4-2

® “Defining a Problem in the Genetic Algorithm Tool” on page 4-3
® “Running the Genetic Algorithm” on page 4-4

¢ “Pausing and Stopping the Algorithm” on page 4-5

* “Displaying Plots” on page 4-7

* “Example — Creating a Custom Plot Function” on page 4-8

¢ “Reproducing Your Results” on page 4-11

® “Setting Options for the Genetic Algorithm” on page 4-11

* “Importing and Exporting Options and Problems” on page 4-13

¢ “Example — Resuming the Genetic Algorithm from the Final Population:” on
page 4-16

Opening the Genetic Algorithm Tool

To open the tool, enter

gatool

at the MATLAB prompt. This opens the Genetic Algorithm Tool, as shown in
the following figure.

Overview of the Genetic Algorithm Tool

Enter fitness function.

Enter number of variables —
for the fitness function.

ISR
File Help
Fitness function: I— Options: ==
Mumher of variables: | [=] Population
~Plot Fopulation type: |D0ub|e Wector LI
Flot interval: |1 Fopulation size: |20
[Bestfitness [Bestindividual [Distance Creation function: {Unifarm |

Start the genetic
algorithm.

Results are

[Expectation [| Genealogy [Range
[Score diversity [| Scores [Selection
[Stapping
[Custom function: I

~Run solver

[0 Use randarm states fram previous rin

i gtanl Fause) | Stop |

Current generation: I

Status and results:

displayed here.

Final paint:

Initial population: ||]

Initial scores: ||]

Initial range: jio; 1]

Fithess scaling

Selection

Reproduction

Mutation

Crossover

Migration

Qutput function

Stapping criteria

Hybrid function

Wectorize

Export to Workspace... |

4]

Defining a Problem in the Genetic Algorithm Tool

You can define the problem you want to solve in the following two fields:

¢ Fitness function — The function you want to minimize. Enter a handle to
an M-file function that computes the fitness function. “Writing an M-File for
the Function You Want to Optimize” on page 1-5 describes how to write the

M-file.

4-3

4 Using the Genetic Algorithm

4-4

¢ Number of variables — The number of independent variables for the fitness
function.

Note Do not use the Editor/Debugger to debug the M-file for the objective
function while running the Genetic Algorithm Tool. Doing so results in Java
exception messages in the Command Window and makes debugging more
difficult. Instead, call the objective function directly from the command line or
pass it to the genetic algorithm function ga. To facilitate debugging, you can
export your problem from the Genetic Algorithm Tool to the MATLAB
workspace, as described in “Importing and Exporting Options and Problems”
on page 4-13..

The following figure shows these fields for the example described in “Example:
Rastrigin’s Function” on page 2-6.

Fitness function: I@rastriginsfcn
MNumber of variables: |2

Running the Genetic Algorithm

To run the genetic algorithm, click Start in the Run solver pane. When you do

S0,

® The Current generation field displays the number of the current
generation.

¢ The Status and results pane displays the message “GA running.”.

The following figure shows the Current generation field and Status and
results pane while the algorithm is running.

Current generation: |48

Status and results:

G4 running.

Overview of the Genetic Algorithm Tool

When the algorithm terminates, the Status and results pane displays

® The message “GA terminated.”

® The fitness function value of the best individual in the final generation
¢ The reason the algorithm terminated

¢ The coordinates of the final point

The following figure shows this information displayed when you run the
example in “Example: Rastrigin’s Function” on page 2-6.

Status and results:

Gi running.

G& terminated.

Fitnezs function walue: 0.0067749206244555025
Optimization terminated:

waxipum number of generations exceeded.

Fitness function value at final point

Final point:

1 2
D007 000516 Coordinates of final point

You can change many of the settings in the Genetic Algorithm Tool while the
algorithm is running. Your changes are applied at the next generation. Until
your changes are applied, which occurs at the start of the next generation, the
Status and Results pane displays the message Changes pending. At the start
of the next generation, the pane displays the message Changes applied. as
shown in the following figure.

Status and results:

=
G4 running.

Changes pending.

Changes applied.

=
4| | »

Pausing and Stopping the Algorithm

While the genetic algorithm is running, you can

4-5

4 Using the Genetic Algorithm

4-6

¢ Click Pause to temporarily suspend the algorithm. To resume the algorithm
using the current population at the time you paused, click Resume.

¢ Click Stop to stop the algorithm. The Status and results pane displays the
fitness function value of the best point in the current generation at the
moment you clicked Stop.

Note If you click Stop and then run the genetic algorithm again by clicking
Start, the algorithm begins with a new random initial population or with the
population you specify in the Initial population field. If you want to restart
the algorithm where it left off, use the Pause and Resume buttons.

“Example — Resuming the Genetic Algorithm from the Final Population:” on
page 4-16 explains what to do if you click Stop and later decide to resume the
genetic algorithm from the final population of the last run.

Setting Stopping Criteria

The genetic algorithm uses five criteria, listed in the Stopping criteria
options, to decide when to stop, in case you do not stop it manually by clicking
Stop. The algorithm stops if any one of the following conditions occur:

® Generations — The algorithm reaches the specified number of generations.
® Time — The algorithm runs for the specified amount of time in seconds.

¢ Fitness limit — The best fitness value in the current generation is less than
or equal to the specified value.

e Stall generations — The algorithm computes the specified number of
generations with no improvement in the fitness function.

¢ Stall time limit — The algorithm runs for the specified amount of time in
seconds with no improvement in the fitness function.

If you want the genetic algorithm to continue running until you click Pause or
Stop, you should change the default values of these options as follows:

¢ Set Generations to Inf

® Set Time to Inf.

® Set Fitness limit to - Inf.

e Set Stall generations to Inf.

Overview of the Genetic Algorithm Tool

e Set Stall time limit to Inf.

The following figure shows these settings.

=l Stopping criteria |

Generations: |Inf
Tirne limit: fint
Fitness limit: fInf

Stall generations: |Inf

Stalltime limit: ~ finf

Note Do not use these settings when calling the genetic algorithm function
ga at the command line, as the function will never terminate until you press
Ctrl + C. Instead, set Generations or Time limit to a finite number.

Displaying Plots
The Plots pane, shown in the following figure, enables you to display various
plots of the results of the genetic algorithm.

Flots

Plotinterval: [t

= [Bestindividual [Distance
[Expectation [Genealogy [Range
[Score diversity [Scores [Selection
[Stopping

[Custorn function: I

Select the check boxes next to the plots you want to display. For example, if you
select Best fitness and Best individual, and run the example described in
“Example: Rastrigin’s Function” on page 2-6, the tool displays the plots shown
in the following figure.

4-7

4 Using the Genetic Algorithm

4-8

=i

File Edit WYiew Insert Tools Window Help

Best: 0.0081106 Mean: 2.2774
20

oz 15F
™
@ 10k
g - °’°..~.
e 5 ' -
] [*eresregs. e e i i i e | | |
10 20 30 40 a0 B0 70 80 90 100
2 GeBeration
w10 Current best genome
B
i)
£
o
54
=
i)
=
e 2r
=
5
=}
0
stop | 1 2

Genome length (2)

The upper plot displays the best and mean fitness values in each generation.
The lower plot displays the coordinates of the point with the best fitness value
in the current generation.

Note When you display more than one plot, clicking on any plot opens a
larger version of it in a separate window.

“Plot Options” on page 6-4 describes the types of plots you can create.

Example — Creating a Custom Plot Function

If none of the plot functions that come with the toolbox is suitable for the output
you want to plot, you can write your own custom plot function, which the
genetic algorithm calls at each generation to create the plot. This example
shows how to create a plot function that displays the change in the best fitness
value from the previous generation to the current generation.

This section covers the following topics:

Overview of the Genetic Algorithm Tool

¢ “Creating the Plot Function” on page 4-9
¢ “Using the Plot Function” on page 4-9
¢ “How the Plot Function Works” on page 4-10

Creating the Plot Function

To create the plot function for this example, copy and paste the following code
into a new M-file in the MATLAB Editor.

function state = gaplotchange(options, state, flag)
% GAPLOTCHANGE Plots the change in the best score from the
% previous generation.

o°

persistent last_best % Best score in the previous generation

if(strcmp(flag, 'init')) % Set up the plot
set(gca, 'xlim',[1,0options.Generations], 'Yscale','log');
hold on;
xlabel Generation
title('Change in Best Fitness Value')

end
best = min(state.Score); % Best score in the current generation
if state.Generation == 0 % Set last_best to best.
last_best = best;
else

change = last_best - best; % Change in best score
last_best=best;
plot(state.Generation, change, '.r');
title(['Change in Best Fitness Value'])
end

Then save the M-file as gaplotchange.min a directory on the MATLAB path.

Using the Plot Function

To use the custom plot function, select Custom in the Plots pane and enter
@gaplotchange in the field to the right. To compare the custom plot with the
best fitness value plot, also select Best fitness. Now, if you run the example
described in “Example: Rastrigin’s Function” on page 2-6, the tool displays the
plots shown in the following figure.

4-9

4 Using the Genetic Algorithm

4-10

Best: 0.0021904 Mean: 0.49832
20

o 15 :..
>
®
>
@ 101
j<+}
S
[T 5|
ol N seeetece,, N
10 20 30 40 50 60 70 80 90 100
Generation
o Change in Best Fitness Value
10" ¢
107
1072}
1073 L L L L L L L L L J
10 20 30 40 50 60 70 80 90 100
&I Generation

Note that because the scale of the y-axis in the lower custom plot is logarithmic,
the plot only shows changes that are greater then 0. The logarithmic scale
enables you to see small changes in the fitness function that the upper plot does
not reveal.

How the Plot Function Works

The plot function uses information contained in the following structures, which
the genetic algorithm passes to the function as input arguments:

® options — The current options settings

® state — Information about the current generation

® flag — String indicating the current status of the algorithm

The most important lines of the plot function are the following.

® persistent last_best

Creates the persistent variable last_best — the best score in the previous
generation. Persistent variables are preserved over multiple calls to the plot
function.

Overview of the Genetic Algorithm Tool

® set(gca, 'xlim',[1,options.Generations], 'Yscale','log');
Sets up the plot before the algorithm starts. options.Generation is the
maximum number of generations.

® best = min(state.Score)
The field state.Score contains the scores of all individuals in the current
population. The variable best is the minimum score. For a complete
description of the fields of the structure state, see “Structure of the Plot
Functions” on page 6-5.

® change = last_best - best
The variable change is the best score at the previous generation minus the
best score in the current generation.

® plot(state.Generation, change, '.r')

Plots the change at the current generation, whose number is contained in
state.Generation.

The code for gaplotchange contains many of the same elements as the code for
gaplotbestf, the function that creates the best fitness plot.

Reproducing Your Results

To reproduce the results of the last run of the genetic algorithm, select the Use
random states from previous run check box. This resets the states of the
random number generators used by the algorithm to their previous values. If
you do not change any other settings in the Genetic Algorithm Tool, the next
time you run the genetic algorithm, it returns the same results as the previous
run.

Normally, you should leave Use random states from previous run unselected
to get the benefit of randomness in the genetic algorithm. Select the Use
random states from previous run check box if you want to analyze the results
of that particular run or show the exact results to others.

Setting Options for the Genetic Algorithm

You can set options for the genetic algorithm in the Options pane, shown in the
figure below.

4-11

4 Using the Genetic Algorithm

4-12

Options: =
=l Population
Genome type: |D0ub|e Wector LI

Fopulation size: |20

Creation function: |Unif0rm LI

Initial population: ||]

Initial scores: ||]

Genome range: [[0;1]

Fithess scaling

Selection

Reproduction

Mutation

Crossover

Migration

Qutput

Stopping criteria

Hybrid function

Wectorize

“Setting Options for the Genetic Algorithm” on page 4-29 describes how options
settings affect the performance of the genetic algorithm. For a detailed
description of all the available options, see “Genetic Algorithm Options” on
page 6-3.

Setting Options as Variables in the MATLAB Workspace.

You can set numerical options either directly, by typing their values in the
corresponding edit box, or by entering the name of a variable in the MATLAB

Overview of the Genetic Algorithm Tool

workspace that contains the option values. For example, you can set the Initial
point to [2.1 1.7] in either of the following ways:
e Enter [2.1 1.7] in the Initial point field.
* Enter
X0 = [2.1 1.7]

at the MATLAB prompt and then enter x0 in the Initial point field.

For options whose values are large matrices or vectors, it is often more
convenient to define their values as variables in the MATLAB workspace. This
way, it is easy to change the entries of the matrix or vector if necessary.

Importing and Exporting Options and Problems

You can export options and problem structures from the Genetic Algorithm
Tool to the MATLAB workspace, and then import them back into the tool at a
later time. This enables you to save the current settings for a problem and
restore them later. You can also export the options structure and use it with
the genetic algorithm function ga at the command line.

You can import and export the following information:
¢ The problem definition, including Fitness function and Number of
variables

¢ The currently specified options
¢ The results of the algorithm

The following sections explain how to import and export this information:

¢ “Exporting Options and Problems” on page 4-13

¢ “Example — Running ga on an Exported Problem” on page 4-15
* “Importing Options” on page 4-16

¢ “Importing Problems” on page 4-16

Exporting Options and Problems

You can export options and problems to the MATLAB workspace so that you
can use them at a future time in the Genetic Algorithm Tool. You can also apply
the function ga using these options or problems at the command line — see
“Using Options and Problems from the Genetic Algorithm Tool” on page 4-24.

4-13

4 Using the Genetic Algorithm

4-14

To export options or problems, click the Export button or select Export to
Workspace from the File menu. This opens the dialog box shown in the
following figure.

-} Export To Workspace] 5
[~ Export problem and options to a MATLAE stucture named: I gaproblem

[Include information needed to resume this run

™ Export options to a MATLAE stucture named: I gaoptions

[~ Export results to a MATLAE stucture named: I garesults
0K | Cancel |

The dialog provides the following options:

¢ To save both the problem definition and the current options settings, select

Export problem and options to a MATLAB structure named and enter a
name for the structure. Clicking OK saves this information to a structure in
the MATLAB workspace. If you later import this structure into the Genetic

Algorithm Tool, the settings for Fitness function, Number of variables,
and all options settings are restored to the values they had when you
exported the structure.

Note Ifyou select Use random states from previous run in the Run solver
pane before exporting a problem, the Genetic Algorithm Tool also saves the
states of rand and randn at the beginning of the last run when you export.
Then, when you import the problem and run the genetic algorithm with Use
random states from previous run selected, the results of the run just before
you exported the problem are reproduced exactly.

¢ If you want the genetic algorithm to resume from the final population of the

last run before you exported the problem, select Include information
needed to resume this run. Then, when you import the problem structure
and click Start, the algorithm resumes from the final population of the
previous run.

To restore the genetic algorithm’s default behavior of generating a random
initial population, delete the population in the Initial population field and
replace it with empty brackets, [].

Overview of the Genetic Algorithm Tool

Note If you select Include information needed to resume this run, then
selecting Use random states from previous run has no effect on the initial
population created when you import the problem and run the genetic
algorithm on it. The latter option is only intended to reproduce results from
the beginning of a new run, not from a resumed run.

® To save only the options, select Export options to a MATLAB structure
named and enter a name for the options structure.

¢ To save the results of the last run of the algorithm, select Export results to
a MATLAB structure named and enter a name for the results structure.

Example — Running ga on an Exported Problem

To export the problem described in “Example: Rastrigin’s Function” on
page 2-6 and run the genetic algorithm function ga on it at the command line,
do the following steps:

1 Click Export to Workspace.

2 In the Export to Workspace dialog box, enter a name for the problem
structure, such as my_gaproblem, in the Export problems and options to a
MATLAB structure named field.

3 At the MATLAB prompt, call the function ga with my_gaproblem as the
input argument:

[x fval] = patternsearch(my_gaproblem)

This returns

X =

0.0027 -0.0052

fval =

0.0068

4-15

4 Using the Genetic Algorithm

4-16

See “Using the Genetic Algorithm from the Command Line” on page 4-21 for
form information.

Importing Options

To import an options structure from the MATLAB workspace, select Import
Options from the File menu. This opens a dialog box that displays a list of the
genetic algorithm options structures in the MATLAB workspace. When you
select an options structure and click Import, the options fields in the Genetic
Algorithm Tool are updated to display the values of the imported options.

You can create an options structure in either of the following ways:

e Calling gaoptimset with options as the output

¢ By saving the current options from the Export to Workspace dialog box in
the Genetic Algorithm Tool

Importing Problems

To import a problem that you previously exported from the Genetic Algorithm
Tool, select Import Problem from the File menu. This opens the dialog box
that displays a list of the genetic algorithm problem structures in the MATLAB
workspace. When you select a problem structure and click OK, the following
fields are updated in the Genetic Algorithm Tool:

¢ Fitness function
® Number of variables
® The options fields

Example — Resuming the Genetic Algorithm from
the Final Population:

The following example shows how export a problem so that when you import it
and click Start, the genetic algorithm resumes from the final population saved
with the exported problem. To run the example, enter the following
information in the Genetic Algorithm Tool

® Set Fitness function to @ackleyfcn, which computes Ackley’s function, a
test function provided with the toolbox.
¢ Set Number of variables to 10.

® Select Best fitness in the Plots pane.

Overview of the Genetic Algorithm Tool

¢ Click Start.

This displays the following plot.

Best: 3.2232 Mean: 3.2232
3451

gglieeieeees. ..

3.351

3.25F

Fitness value
w
N
.

w

=

[4]
T

3.1

3.051

3 I I I I I I I I)

L
stop I 10 20 30 40 50 60 70 80 90 100
Generation

Suppose you want to experiment by running the genetic algorithm with other
options settings, and then later restart this run from its final population with
its current options settings. You can do this by the following steps:

1 Click the Export to Workspace button

2 In the dialog box that appears,
= Select Export problem and options to a MATLAB structure named.

= Enter a name for the problem and options, such as ackley_run1, in the
text field.

= Select Include information needed to resume this run.

The dialog box should now appear as in the following figure.

4-17

4 Using the Genetic Algorithm

4-18

) Export To Workspace o] 4
¥ Export problem and options to a MATLAE structure named: I ackley unifarm

V¥ Include information needed to resume this run

[~ Export options to a MATLABR shucture named: I qaophions
[~ Export results to a MATLAB structure named: I garesults

OK | Cancell

3 Click OK.

This exports the problem and options to a structure in the MATLAB
workspace. You can view the structure in the MATLAB Command Window by
entering

ackley_uniform
ackley_uniform =

fitnessfcn: @ackleyfcn
genomelength: 10
options: [1x1 struct]

After running the genetic algorithm with different options settings or even a
different fitness function, you can restore the problem as follows:

1 Select Import Problem from the File menu. This opens the dialog box
shown in the following figure.

Overview of the Genetic Algorithm Tool

-} Import GA Problem Xl
Select a problem structure bo import;

| ackiep o]|

Impiart Cancel |

2 Select ackley_uniform.

3 Click Import.

This sets the Initial population field in Population options to the final
population of the run before you exported the problem. All other options are
restored to their setting during that run. When you click Start, the genetic
algorithm resumes from the saved final population. The following figure shows
the best fitness plots from the original run and the restarted run.

4-19

4 Using the Genetic Algorithm

4-20

Fitness value
i w N w w w IS
ol N Ul w o S o
T T T

w
o

w

o

&
T

w

Best: 3.2232 Mean: 3.2232 Best: 3.1386 Mean: 3.1386

JEUSRRSR UG SIS SRS S LE NI

stop

L L L) L L L L L
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 920 100

Generation Generation
First run Run resumes here

Note If, after running the genetic algorithm with the imported problem, you
want to restore the genetic algorithm’s default behavior of generating a
random initial population, delete the population in the Initial population
field and replace it with empty brackets, [1].

Generating an M-File

To create an M-file that runs the genetic algorithm, using the fitness function
and options you specify in the Genetic Algorithm Tool, select Generate M-File
from the File menu and save the M-file in a directory on the MATLAB path.
Calling this M-file at the command line returns the same results as the Genetic
Algorithm Tool, using the fitness function and options settings that were in
place when you generated the M-file.

Using the Genetic Algorithm from the Command line

Using the Genetic Algorithm from the Command Line

As an alternative to using the Genetic Algorithm Tool, you can run the genetic
algorithm function ga from the command line. This section explains how to do
so and covers the following topics.

® “Running the Genetic Algorithm with the Default Options” on page 4-21

® “Setting Options” on page 4-22

® “Using Options and Problems from the Genetic Algorithm Tool” on page 4-24
¢ “Reproducing Your Results” on page 4-25

® “Resuming ga from the Final Population of a Previous Run” on page 4-26

® “Running ga from an M-File” on page 4-26

Running the Genetic Algorithm with the Default
Options
To run the genetic algorithm with the default options, call ga with the syntax

[x fval] = ga(@fitnessfun, nvars)
The input arguments to ga are

e @fitnessfun — A function handle to the M-file that computes the fitness
function. “Writing an M-File for the Function You Want to Optimize” on
page 1-5 explains how to write this M-file.

¢ nvars — The number of independent variables for the fitness function.
The output arguments are

® x — The final point

e fval — The value of the fitness function at x

For a description of additional output arguments, see the reference page for ga.

As an example, you can run the example described in “Example: Rastrigin’s
Function” on page 2-6 from the command line by entering

[x fval] = ga(@rastriginsfcn, 2)

This returns

X =

4-21

4 Using the Genetic Algorithm

4-22

0.0027 -0.0052

fval =

0.0068

Additional Output Arguments
To get more information about the performance of the genetic algorithm, you
can call ga with the syntax

[x fval reason output population scores] = ga(@fitnessfcn, nvars)
Besides x and fval, this returns the following additional output arguments:

® reason — Reason the algorithm terminated

® output — Structure containing information about the performance of the
algorithm at each generation

® population — Final population

e scores — Final scores

See the reference page for ga for more information about these arguments.

Setting Options

You can specify any of the options that are available in the Genetic Algorithm
Tool by passing an options structure as an input argument to ga using the
syntax

[x fval] = ga(@fitnessfun, nvars, options)

You create the options structure using the function gaoptimset.
options = gaoptimset

This returns the structure options with the default values for its fields.
options =

PopulationType: 'doubleVector'
PopInitRange: [2x1 double]

Using the Genetic Algorithm from the Command line

PopulationSize: 20
EliteCount: 2
CrossoverFraction: 0.8000
MigrationDirection: 'forward'
MigrationInterval: 20
MigrationFraction: 0.2000
Generations: 100
TimeLimit: Inf
FitnessLimit: -Inf
StallLimitG: 50
StallLimitS: 20
InitialPopulation: []
InitialScores: []
PlotInterval: 1
CreationFcn: @gacreationuniform
FitnessScalingFcn: @fitscalingrank
SelectionFcn: @selectionstochunif
CrossoverFcn: @crossoverscattered
MutationFcn: @mutationgaussian
HybridFcn: []
PlotFcns: []
OutputFcns: []
Vectorized: 'off'

The function ga uses these default values if you do not pass in options as an
input argument.

The value of each option is stored in a field of the options structure, such as
options.PopulationSize. You can display any of these values by entering
options followed by the name of the field. For example, to display the size of
the population for the genetic algorithm, enter

options.PopulationSize
ans =

20

To create an options structure with a field value that is different from the
default —for example to set PopulationSize to 100 instead of its default value
20 — enter

4-23

4 Using the Genetic Algorithm

4-24

options = gaoptimset('PopulationSize', 100)

This creates the options structure with all values set to their defaults except
for PopulationSize, which is set to 100.

If you now enter,

ga(@fitnessfun, nvars, options)

ga runs the genetic algorithm with a population size of 100.

If you subsequently decide to change another field in the options structure,
such as setting PlotFcns to @gaplotbestf, which plots the best fitness function
value at each generation, call gaoptimset with the syntax

options = gaoptimset(options, 'PlotFcns', @plotbestf)

This preserves the current values of all fields of options except for PlotFcns,
which is changed to @plotbestf. Note that if you omit the input argument
options, gaoptimset resets PopulationSize to its default value 20.

You can also set both PopulationSize and PlotFcns with the single command

options = gaoptimset('PopulationSize',100, 'PlotFcns',@plotbestf)

Using Options and Problems from the Genetic
Algorithm Tool

As an alternative to creating an options structure using gaoptimset, you can
set the values of options in the Genetic Algorithm Tool and then export the
options to a structure in the MATLAB workspace, as described in “Exporting
Options and Problems” on page 4-13. If you export the default options in the
Genetic Algorithm Tool, the resulting structure options has the same settings
as the default structure returned by the command

options = gaoptimset

If you export a problem structure, ga_problem, from the Genetic Algorithm
Tool, you can apply ga to it using the syntax

[x fval] = ga(ga_problem)
The problem structure contains the following fields:

e fitnessfcn — Fitness function

Using the Genetic Algorithm from the Command line

® nvars — Number of variables for the problem

® options — Options structure

Reproducing Your Results

Because the genetic algorithm is stochastic — that is, it makes random choices
— you get slightly different results each time you run the genetic algorithm.
The algorithm uses the MATLAB uniform and normal random number
generators, rand and randn, to makes random choices at each iteration. Each
time ga calls rand and randn, their states are changed, so that the next time
they are called, they return different random numbers. This is why the output
of ga differs each time you run it.

If you need to reproduce your results exactly, you can call ga with an output
argument that contains the current states of rand and randn and then reset the
states to these values before running ga again. For example, to reproduce the
output of ga applied to Rastrigin’s function, call ga with the syntax

[x fval reason output] = ga(@rastriginsfcn, 2);

Suppose the results are

X =

0.0027 -0.0052
fval =
0.0068
The states of rand and randn are stored in the first two fields of output.
output =
randstate: [35x1 double]
randnstate: [2x1 double]
generations: 100

funccount: 2000
message: [1x64 char]

Then, reset the states, by entering

rand('state', output.randstate);
randn('state', output.randnstate);

4-25

4 Using the Genetic Algorithm

4-26

If you now run ga a second time, you get the same results.

Note If you do not need to reproduce your results, it is better not to set the
states of rand and randn, so that you get the benefit of the randomness in the
genetic algorithm.

Resuming ga from the Final Population of a
Previous Run

By default, ga creates a new initial population each time you run it. However,
you might get better results by using the final population from a previous run
as the initial population for a new run. To do so, you must have saved the final
population from the previous run by calling ga with the syntax

[x, fval, reason, output, final_pop] = ga(@fitnessfcn, nvars);

The last ouput argument, is the final population. To run ga using final pop as
the initial population, enter

options = gaoptimset('InitialPop', final_pop);
[x, fval, reason, output, final_pop2] = ga(@fitnessfcn, nvars);

If you want, you can then use final pop2, the final population from the second
run, as the initial population for a third run.

Running ga from an M-File

The command-line interface enables you to run the genetic algorithm many
times, with different options settings, using an M-file. For example, you can
run the genetic algorithm with different settings for Crossover fraction to see
which one gives the best results. The following code runs the function ga
twenty-one times, varying options.CrossoverFraction from 0 to 1 in
increments of 0.5, and records the results.

options = gaoptimset('Generations',300);
rand('state', 71); % These two commands are only included to
randn('state', 59); % make the results reproducible.
record=[1;
for n=0:.05:1

options = gaoptimset(options, 'CrossoverFraction', n);

Using the Genetic Algorithm from the Command line

[x fval]=ga(@rastriginsfcn, 10, options);
record = [record; fvall;
end

You can plot the values of fval against the crossover fraction with the following
commands:

plot(0:.05:1, record);
xlabel('Crossover Fraction');
ylabel('fval')

This displays the following plot.

60

50~ b

10 b

0 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Crossover Fraction

The plot indicates that you get the best results by setting
options.CrossoverFraction to a value somewhere between 0.6 and 0.95.

You can get a smoother plot of fval as a function of the crossover fraction by
running ga 20 times and averaging the values of fval for each crossover
fraction. The following figure shows the resulting plot.

4-27

4 Using the Genetic Algorithm

50

Average fval for 20 Runs

0 . . .
0 0.2 0.4 0.6 0.8 1
Crossover Fraction

The plot narrows the range of best choices for options.CrossoverFraction to
values between 0.7 and 0.9.

4-28

Setting Options for the Genetic Algorithm

Setting Options for the Genetic Algorithm

To get the best results from the genetic algorithm, you usually need to
experiment with different options. Selecting the best options for a problem
involves trial and error. This section describes some ways you can change
options to improve results. For a complete description of the available options,
see “Genetic Algorithm Options” on page 6-3.

This section covers the following topics:

® “Diversity” on page 4-29

¢ “Population Options” on page 4-30

* “Fitness Scaling Options” on page 4-34

® “Selection Options” on page 4-38

¢ “Reproduction Options” on page 4-39

¢ “Mutation and Crossover” on page 4-39

e “Mutation Options” on page 4-40

® “The Crossover Fraction” on page 4-42

¢ “Example — Global Versus Local Minima” on page 4-47
® “Setting the Maximum Number of Generations” on page 4-51
® “Using a Hybrid Function” on page 4-53

® “Vectorize Option” on page 4-55

Diversity

One of the most important factors in determining how well the genetic
algorithm performs is the diversity of the population. If the average distance
between individuals is large, the diversity is high; if the average distance is
small, the diversity is low. Diversity affects the performance of the genetic
algorithm. If the diversity is too large or too small, the algorithm might not
perform well.

You can control the amount of diversity in the population by various options
settings, including the Initial range and the amount of mutation in Mutation
options. The examples in the following sections illustrate how these options
affect the behavior of the genetic algorithm:

¢ “Example —Setting the Initial Range” on page 4-30

4-29

4 Using the Genetic Algorithm

4-30

® “Mutation Options” on page 4-40

Population Options

Population options control the characteristics of the individuals in the
population. This section describes the following options:

* “Example —Setting the Initial Range” on page 4-30

® “Setting the Population Size” on page 4-33

Example —Setting the Initial Range

By default, the Genetic Algorithm Tool creates a random initial population
using the creation function. You can specify the range of the vectors in the
initial population in the Initial range field in Population options.

Note The initial range only restricts the range of the points in the initial
population. Subsequent generations can contain points whose entries do not
lie in the initial range.

If you know approximately where the solution to a problem lies, you should
specify the initial range so that it contains your guess for the solution.
However, the genetic algorithm can find the solution even if it does not lie in
the initial range, provided that the populations have enough diversity.

The following example shows how the initial range affects the performance of
the genetic algorithm. The example uses Rastrigin’s function, described in
“Example: Rastrigin’s Function” on page 2-6. The minimum value of the
function is 0, which occurs at the origin.

To run the example, make the following settings in the Genetic Algorithm Tool:

® Set Fitness function to @Rastriginsfcn.
¢ Set Number of variables to 2.

® Select Best fitness in the Plots pane.

¢ Select Range in the Plots pane.

¢ Set Initial range to [1; 1.1].

Setting Options for the Genetic Algorithm

Then click Start. The genetic algorithm returns the best fitness function value

of approximately 2 and displays the plots in the following figure.

Best: 1.9899 Mean: 1.9911

10*°t
) L°
=
<
o 10%°h
173
()
s
T g0t
1073 teee " s A N i s e 13222s00sss s
10 20 30 40 50 60 70 80 90 100
Generation
Average Distance between individuals
0.2r
0.15 .
0.1t °
0.05-
o \ L s
10 20 30 40 50 60 70 80 90 100

stop I

generation

The upper plot the best fitness values at each generation shows little progress
in lowering the fitness function. The lower plot shows the average distance
between individuals at each generation, which is a good measure of the
diversity of a population. For this setting of initial range, there is too little
diversity for the algorithm to make progress.

Next, try setting Initial range to [1; 100] and running the algorithm. The
genetic algorithm returns the best fitness value of approximately 3.9 and
displays the following plots.

4-31

4 Using the Genetic Algorithm

Best: 3.8861 Mean: 10.2159

1071
()
=}
< | e et
>
2]
%]
e RN
5
L N
100 1 1 1 1 1 1 1 1 1 J
10 20 30 40 50 60 70 80 90 100
Generation
Average Distance between individuals
150 .,
100f,
50
0 1 1 1 1 1 1 L L : h : “.'..h

10 20 30 40 50 60 70 80 90 100

&I generation

This time, the genetic algorithm makes progress, but because the average
distance between individuals is so large, the best individuals are far from the
optimal solution.

Finally, set Initial range to [1; 2] and run the genetic algorithm. This returns
the best fitness value of approximately .012 and displays the following plots.

4-32

Setting Options for the Genetic Algorithm

10" ¢

Fitness value
=
o
T

.........

Best: 0.011658 Mean: 0.062498

..........
.......................

............

10 "¢
10_2 1 1 1 1 1 1 L Il hidid AT YT YT Py
10 20 30 40 50 60 70 80 920 100
Generation
Average Distance between individuals
2 -
15F.
1 |
0.5F
0 L ! 1 1 ! ! ! ! I. """ o
10 20 30 40 50 60 70 80 90 100

stop |

generation

The diversity in this case is better suited to the problem, so the genetic
algorithm returns a much better result than in the previous two cases.

Setting the Population Size

The Size field in Population options determines the size of the population at
each generation. Increasing the population size enables the genetic algorithm
to search more points and thereby obtain a better result. However, the larger
the population size, the longer the genetic algorithm takes to compute each

generation

Note You should set Size to be at least the value of Number of variables, so
that the individuals in each population span the space being searched.

4-33

4 Using the Genetic Algorithm

4-34

You can experiment with different settings for Population size that return
good results without taking a prohibitive amount of time to run.

Fitness Scaling Options

Fitness scaling converts the raw fitness scores that are returned by the fitness
function to values in a range that is suitable for the selection function. The
selection function uses the scaled fitness values to select the parents of the next
generation. The selection function assigns a higher probability of selection to
individuals with higher scaled values.

The range of the scaled values affects the performance of the genetic algorithm.
If the scaled values vary too widely, the individuals with the highest scaled
values reproduce too rapidly, taking over the population gene pool too quickly,
and preventing the genetic algorithm from searching other areas of the
solution space. On the other hand, if the scaled values vary only a little, all
individuals have approximately the same chance of reproduction and the
search will progress very slowly.

The default fitness scaling function, Rank, scales the raw scores based on the
rank of each individual instead of its score. The rank of an individual is its
position in the sorted scores: the rank of the most fit individual is 1, the next
most fit is 2, and so on. The rank scaling function assigns scaled values so that

* The scaled value of an individual with rank n is proportional to 1/(/n).

¢ The sum of the scaled values over the entire population equals the number
of parents needed to create the next generation.

Rank fitness scaling removes the effect of the spread of the raw scores.

The following plot shows the raw scores of a typical population of 20
individuals, sorted in increasing order.

Setting Options for the Genetic Algorithm

140

130

120

110

100

Score

90

80

70

60

Raw Scores of Population

50
0

10
Sorted individuals

15

20

The following plot shows the scaled values of the raw scores using rank scaling.

4-35

4 Using the Genetic Algorithm

4-36

Scaled Values Using Rank Scaling
4.5 T T T

Scaled value
N
(6]
T
*
1

1.5 * i

*
*
* %

0.5 L L L
0 5 10 15 20

Sorted individuals

Because the algorithm minimizes the fitness function, lower raw scores have
higher scaled values. Also, because rank scaling assigns values that depend

only on an individual’s rank, the scaled values shown would be the same for

any population of size 20 and number of parents equal to 32.

Comparing Rank and Top Scaling

To see the effect of scaling, you can compare the results of the genetic algorithm
using rank scaling with one of the other scaling functions, such as Top. By
default, top scaling assigns the four fittest individuals the same scaled value,
equal to the number of parents divided by 4, and assigns the rest the value 0.
Using the default selection function, only the four fittest individuals can be
selected as parents.

The following figure compares the scaled values of a population of size 20 with
number of parents equal to 32 using rank and top scaling.

Setting Options for the Genetic Algorithm

Comparison of Rank and Top Scaling

gt + + + + * Rank scaling |
+ Top scaling
7, 4
6, 4
w 51 1
]
N
© 4r 1
]
T
[&]
(/.)3, * 4
*
2r *)]

* %

1r KKk o ok o ¥ %
of +++++++++++++++ T
0 5 10 15 20

Sorted individuals

Because top scaling restricts parents to the fittest individuals, it creates less
diverse populations than rank scaling. The following plot compares the
variances of distances between individuals at each generation using rank and
top scaling.

4-37

4 Using the Genetic Algorithm

4-38

Variance of Distance Between Individuals Using Rank and Top Scaling

08 T T T T T T T T T
* Variance using rank scaling
* + Variance using top scaling
0.7f * |
*
x
0.6 * * + b
* * % *
e * ok ﬁ* *
0.5¢ * * K b
*
3 *ox s Foxop K *
c * g ¥
8 041 R * i
E * + * %
> + + ** K *
+ + *
03F N Lot * ¥ %&*** .
4+ +++ + i .
o+ F+ +, + *
0.2f + ++ + o+ 4+ * b
+ + + ++ +++ T o5 Bk x
+ + ++ + +* i Hk
+ I
L TS e TR i
0.1 " T4+ ﬁszgﬁ
+ ‘PK + ‘Hﬂr -+ ﬁ%*
+++$+++%
0 ! ! ! ! ! ! ! ! \+++

0 10 20 30 40 50 60 70 80 90 100
Generation

Selection Options

The selection function chooses parents for the next generation based on their
scaled values from the fitness scaling function. An individual can be selected

more than once as a parent, in which case it contributes its genes to more than
one child. The default selection function, Stochastic uniform, lays out a line
in which each parent corresponds to a section of the line of length proportional
to its scaled value. The algorithm moves along the line in steps of equal size. At
each step, the algorithm allocates a parent from the section it lands on.

A more deterministic selection function is Remainder, which performs two
steps:

¢ In the first step, the function selects parents deterministically according to
the integer part of the scaled value for each individual. For example, if an
individual’s scaled value is 2.3, the function selects that individual twice as
a parent.

Setting Options for the Genetic Algorithm

¢ In the second step, the selection function selects additional parents using the
fractional parts of the scaled values, as in stochastic uniform selection. The
function lays out a line in sections, whose lengths are proportional to the
fractional part of the scaled value of the individuals, and moves along the
line in equal steps to select the parents.

Note that if the fractional parts of the scaled values all equal 0, as can occur
using Top scaling, the selection is entirely deterministic.

Reproduction Options

Reproduction options control how the genetic algorithm creates the next
generation. The options are

¢ Elite count — The number of individuals with the best fitness values in the
current generation that are guaranteed to survive to the next generation.
These individuals are called elite children. The default value of Elite count
is 2.
When Elite count is at least 1, the best fitness value can only decrease from
one generation to the next. This is what you want to happen, since the
genetic algorithm minimizes the fitness function. Setting Elite count to a
high value causes the fittest individuals to dominate the population, which
can make the search less effective.

® Crossover fraction — The fraction of individuals in the next generation,
other than elite children, that are created by crossover.“The Crossover
Fraction” on page 4-42 describes how the value of Crossover fraction affects
the performance of the genetic algorithm.

Mutation and Crossover

The genetic algorithm uses the individuals in the current generation to create
the children that make up the next generation. Besides elite children, which
correspond to the individuals in the current generation with the best fitness
values, the algorithm creates

® Crossover children by selecting vector entries, or genes, from a pair of
individuals in the current generation and combines them to form a child.

® Mutation children by applying random changes to a single individual in the
current generation to create a child.

4-39

4 Using the Genetic Algorithm

4-40

Both processes are essential to the genetic algorithm. Crossover enables the
algorithm to extract the best genes from different individuals and recombine
them into potentially superior children. Mutation adds to the diversity of a
population and thereby increases the likelihood that the algorithm will
generate individuals with better fitness values. Without mutation, the
algorithm could only produce individuals whose genes were a subset of the
combined genes in the initial population.

See “Creating the Next Generation” on page 2-20 for an example of how the
genetic algorithm applies mutation and crossover.

You can specify how many of each type of children the algorithm creates as
follows:

¢ Elite count, in Reproduction options, specifies the number of elite children.

¢ Crossover fraction, in Reproduction options, specifies the fraction of the
population, other than elite children, that are crossover children.

For example, if the Population size is 20, the Elite count is 2, and the
Crossover fraction is 0.8, the numbers of each type of children in the next
generation is as follows:

® There are 2 elite children

® There are 18 individuals other than elite children, so the algorithm rounds
0.8%18 = 14.4 to 14 to get the number of crossover children.

® The remaining 4 individuals, other than elite children, are mutation
children.

Mutation Options

The genetic algorithm applies mutations using the function that you specify in
the Mutation function field. The default mutation function, Gaussian, adds a
random number, or mutation, chosen from a Gaussian distribution, to each
entry of the parent vector. Typically, the amount of mutation, which is
proportional to the standard deviation of the distribution, decreases as at each
new generation. You can control the average amount of mutation that the
algorithm applies to a parent in each generation through the Scale and Shrink
options:

Setting Options for the Genetic Algorithm

® Scale controls the standard deviation of the mutation at the first generation,
which is Seale multiplied by the range of the initial population, which you
specify by the Initial range option.

¢ Shrink controls the rate at which the average amount of mutation decreases.
The standard deviation decreases linearly so that its final value equals
1 - Shrink times its initial value at the first generation. For example, if
Shrink has the default value of 1, then the amount of mutation decreases to
0 at the final step.

You can see the effect of mutation by selecting the plot functions Distance and
Range, and then running the genetic algorithm on a problem such as the one
described in “Example: Rastrigin’s Function” on page 2-6. The following figure
shows the plot.

Average Distance between individuals

L L L °T y°°%eece.. ’

0 1 1 1 1

1
10 20 30 40 50 60 70 80 90 100

generation
Best, Worst, and Mean scores

200

150

100

50

0

_stop | ° generation 120

The upper plot displays the average distance between points in each
generation. As the amount of mutation decreases, so does the average distance
between individuals, which is approximately 0 at the final generation. The
lower plot displays a vertical line at each generation, showing the range from
the smallest to the largest fitness value, as well as mean fitness value. As the
amount of mutation decreases, so does the range. These plots show that

4-41

4 Using the Genetic Algorithm

4-42

reducing the amount of mutation decreases the diversity of subsequent
generations.

For comparison, the following figure shows the plots for Distance and Range
when you set Shrink to 0.5.

Average Distance between individuals

4 -
3 |-
2 |-
1r "
0)
10 20 30 40 50 60 70 80 90 100
generation
Best, Worst, and Mean scores
250
200
150
100
50

0

0 100 120

_stee | generation
With Shrink set to 0.5, the average amount of mutation decreases by a factor
of 1/2 by the final generation. As a result, the average distance between
individuals decreases by approximately the same factor.

The Crossover Fraction

The Crossover fraction field, in the Reproduction options, specifies the
fraction of each population, other than elite children, that are made up of
crossover children. A crossover fraction of 1 means that all children other than
elite individuals are crossover children, while a crossover fraction of 0 means
that all children are mutation children. The following example show that
neither of these extremes is an effective strategy for optimizing a function.

The example uses the fitness function whose value at a point is the sum of the
absolute values of the coordinates at the points. That is,

Setting Options for the Genetic Algorithm

flxy, %9, ...ix,) = |x1’ + ‘xz‘ + ...+ ’xn’

You can define this function as an inline function by setting Fitness function
to

inline('sum(abs(x))")
To run the example,

¢ Set Fitness function to inline('sum(abs(x))"').

¢ Set Number of variables to 10.

¢ Set Initial range to [-1; 1].

® Select the Best fitness and Distance in the Plots pane.

First, run the example with the default value of 0.8 for Crossover fraction.

This returns the best fitness value of approximately 0.2 and displays the
following plots.

Best: 0.23492 Mean: 0.48445

Fitness value

10 20 30 40 50 60 70 80 90 100
Generation
Average Distance between individuals

0 1 1 1 1 1 1 1) ".\ 1

L
e I 10 20 30 40 50 60 70 80 90 100
2 generation

4-43

4 Using the Genetic Algorithm

Crossover Without Mutation

To see how the genetic algorithm performs when there is no mutation, set
Crossover fraction to 1.0 and click Start. This returns the best fitness value
of approximately 1.3 and displays the following plots.

Fitness value
w
:

/

Best: 1.3161 Mean: 1.3161

Best individual created at generation 8

251

2k

1.5¢r-.

0.5F

i

10 20 30 40 50 60 70 80
Generation
Average Distance between individuals

All individuals are the same.

L. i It It i I I I

90 100

0

stop I

10 20 30 40 50 60 70 80
generation

J
90 100

In this case, the algorithm selects genes from the individuals in the initial
population and recombines them. The algorithm cannot create any new genes
because there is no mutation. The algorithm generates the best individual that
it can using these genes at generation number 8, where the best fitness plot
becomes level. After this, it creates new copies of the best individual, which are
then are selected for the next generation. By generation number 17, all
individuals in the population are the same, namely, the best individual. When
this occurs, the average distance between individuals is 0. Since the algorithm
cannot improve the best fitness value after generation 8, it stalls after 50 more
generations, because Stall generations is set to 50.

4-44

Setting Options for the Genetic Algorithm

Mutation without Crossover

To see how the genetic algorithm performs when there is no crossover, set
Crossover fraction to 0 and click Start. This returns the best fitness value of
approximately 3.5 and displays the following plots.

Best: 3.493 Mean: 11.2376
251 ...

20
151

101

Fitness value

0
10 20 30 40 50 60 70 80 90 100

Generation
Average Distance between individuals
14
12f

10t S

4 I I I I I I I I I

J
i I 10 20 30 40 50 60 70 80 90 100
2 generation

In this case, the random changes that the algorithm applies never improve the
fitness value of the best individual at the first generation. While it improves
the individual genes of other individuals, as you can see in the upper plot by
the decrease in the mean value of the fitness function, these improved genes
are never combined with the genes of the best individual because there is no
crossover. As a result, the best fitness plot is level and the algorithm stalls at
generation number 50.

Comparing Results for Varying Crossover Fractions

The demo deterministicstudy.m, which is included in the toolbox, compares
the results of applying the genetic algorithm to Rastrigin’s function with
Crossover fraction set to 0, .2, .4, .6, .8, and 1. The demo runs for 10
generations. At each generation, the demo plots the means and standard

4-45

4 Using the Genetic Algorithm

4-46

deviations of the best fitness values in all the preceding generations, for each
value of the Crossover fraction.

To run the demo, enter

deterministicstudy

at the MATLAB prompt. When the demo is finished, the plots appear as in the
following figure.

After 10 ilterations

Iteration

0 0.2 0.4 0.6 0.8 1
CrossoverFraction
60
e}
n
2
S 40F B
c
It
s
o 20+ 1
o
O
%]

0 0.2 0.4 0.6 0.8 1
CrossoverFraction

The lower plot shows the means and standard deviations of the best fitness
values over 10 generations, for each of the values of the crossover fraction. The
upper plot shows a color-coded display of the best fitness values in each
generation.

For this fitness function, setting Crossover fraction to 0.8 yields the best
result. However, for another fitness function, a different setting for Crossover
fraction might yield the best result.

Setting Options for the Genetic Algorithm

Example — Global Versus Local Minima

Sometimes the goal of an optimization is to find the global minimum or
maximum of a function — a point where the function value is smaller or larger
at any other point in the search space. However, optimization algorithms
sometimes return a local minimum — a point where the function value is
smaller than at nearby points, but possibly greater than at a distant point in
the search space. The genetic algorithm can sometimes overcome this
deficiency with the right settings.

As an example, consider the following function

2
fix) = —exp(—(zio)) for x <20
—exp(-1) + (x —20)(x —22) for x> 20

The following figure shows a plot of the function.

25

Local minima

4-47

4 Using the Genetic Algorithm

The function has two local minima, one at x = 0, where the function valueis - 1,
and the other at x = 21, where the function value is - 1 - 1/e. Since the latter
value is smaller, the global minimum occurs at x = 21.

Running the Genetic Algorithm on the Example
To run the genetic algorithm on this example,

1 Copy and paste the following code into a new M-file in the MATLAB Editor.

function y = two_min(x)
if x<20
y = -exp(-(x/20).72);
else
y = -exp(-1)+(x-20)*(x-22);
end

2 Save the file as two_min.m in a directory on the MATLAB path.

3 In the Genetic Algorithm Tool,

= Set Fitness function to @two_min.
= Set Number of variables to 1.
= Click Start.

The genetic algorithm returns a point very close to the local minimum at x = 0.

Status and results:

Gi& terminated. _‘I
Fitness function walue: -0.999999999553535504

Optinization terminated:
maKinum rmumber of generations exceeded.
-
K| | 3

Final paint:

1
-0.00041

The following custom plot shows why the algorithm finds the local minimum
rather than the global minimum. The plot shows the range of individuals in
each generation and the best individual.

Setting Options for the Genetic Algorithm

251

151

0.5H

Best individual

Best: 0.00028487

L J
10 20 30 40 50 60 70 80 90 100
Generation

Note that all individuals are between -2 and 2.5. While this range is larger than
the default Initial range of [0;1], due to mutation, it is not large enough to
explore points near the global minimum at x = 21.

One way to make the genetic algorithm explore a wider range of points — that
is, to increase the diversity of the populations — is to increase the Initial
range. The Initial range does not have to include the point x = 21, but it must
be large enough so that the algorithm generates individuals near x = 21. Set
Initial range to [0;15] as shown in the following figure.

= Population

Fopulation type:

Fopulation size:

Creation function:

Initial population:
Initial scores:

Initial range:

|Double vectar =l

20

Junifarm =l

fo

o

BG Set Initial range to [0; 15].

4-49

4 Using the Genetic Algorithm

4-50

Then click Start. The genetic algorithm returns a point very close 21.

Status and results:

GA runming. ;I
Gh terminated.

Fithess function walue: -1.367725252208655
Oprimization terminated:

maxinum mumber of generations exceeded,

) ;Ij
Final paint:

1
2088758

This time, the custom plot shows a much wider range of individuals. By the
second generation there are individuals greater than 21, and by generation 12,
the algorithm finds a best individual that is approximately equal to 21.

Best: 20.9876
80

60

a0}

20

M | MWIM\H)HmHmww“““*w-

Best individual

-60

stap I 10 20 30 40 50 60 70 80 90 100
Generation

Setting Options for the Genetic Algorithm

Setting the Maximum Number of Generations

The Generations option in Stopping criteria determines the maximum
number of generations the genetic algorithm runs for — see “Stopping
Conditions for the Algorithm” on page 2-24. Increasing Generations often
improves the final result.

As an example, change the settings in the Genetic Algorithm Tool as follows:

® Set Fitness function to @rastriginsfcn.
® Set Number of variables to 10.

® Select Best fitness in the Plots pane.

® Set Generations to Inf.

® Set Stall generations to Inf.

® Set Stall time to Inf

Then run the genetic algorithm for approximately 300 generations and click
Stop. The following figure shows the resulting Best fitness plot after 300

generations.

4-51

4 Using the Genetic Algorithm

4-52

Best: 5.0444 Mean: 48.7926
100

80~

70F

Ce,p % . . oo .
50 *° - : . o et 0t % . St e .
. S Py .o . oo e S o o .
R A S L A R 7 St e et

Fitness value

40: . Py -) PR : '.’....-: i
30r-

20F -

0 1 1 1 1 1 1
- I 50 100 150 200 250 300
Generation

Genetic algorithm stalls

Note that the algorithm stalls at approximately generation number 170 — that
is, there is no immediate improvement in the fitness function after generation
170. If you restore Stall generations to its default value of 50, the algorithm
would terminate at approximately generation number 230. If the genetic
algorithm stalls repeated with the current setting for Generations, you can try
increasing both Generations and Stall generations to improve your results.
However, changing other options might be more effective.

Note When Mutation function is set to Gaussian, increasing the value of
Generations might actually worsen the final result. This can occur because
the Gaussian mutation function decreases the average amount of mutation in
each generation by a factor that depends on Generations. Consequently, the
setting for Generations affects the behavior of the algorithm.

Setting Options for the Genetic Algorithm

Using a Hybrid Function

A hybrid function is an optimization function that runs after the genetic
algorithm terminates in order to improve the value of the fitness function. The
hybrid function uses the final point from the genetic algorithm as its initial
point. You can specify a hybrid function in Hybrid function options.

This example uses the function fminunc, an unconstrained minimization
function in the Optimization Toolbox. The example first runs the genetic
algorithm to find a point close to the optimal point and then uses that point as
the initial point for fminunc.

The example finds the minimum of Rosenbrock’s function, which is defined by

flay) = 1000y —22) +(1-x)°

The following figure shows a plot of Rosenbrock’s function.

3000 , ,
2500 ' E - B
2000 ‘ v L ’ 27
. . pdi {
1500 , - : 2
AN\ . 7
1000 //1//,
=
. N S5 2/, /
500 o ‘Ek;Eéégﬁﬁgﬁgnﬂﬁmﬂzl 1)y
= 777"/
0.l 2
3

Minimum ot (1, 1)

4-53

4 Using the Genetic Algorithm

4-54

The toolbox provides an M-file, dejong2fcn.m, that computes the function. To
a see a demo of this example, enter

hybriddemo
at the MATLAB prompt.

To explore the example, first enter gatool to open the Genetic Algorithm Tool
and enter the following settings:

® Set Fitness function to @dejong2fcn.
¢ Set Number of variables to 2.

® Set Population size to 10.

Before adding a hybrid function, trying running the genetic algorithm by itself,
by clicking Start. The genetic algorithm displays the following results in the
Status and results pane.

Status and results:

Gh running. _‘I
G4 terminated.

Fitness function walue: 5.562745923956045E-4
Optinization terminated:

waximum mumber of generations exceeded.
-
Rl | Llj
Final paint:
1 2
1.02355 1.04778
Kl i

The final point is close to the true minimum at (1, 1). You can improve this
result by setting Hybrid function to fminunc in Hybrid function options.

= Hyhrid function |

Hybrid function: [fminunc — = SetHybrid function fo fminunc.

When the genetic algorithm terminates, the function fminunc takes the final
point of the genetic algorithm and as its initial point and returns a more
accurate result, as shown in the Status and results pane.

Setting Options for the Genetic Algorithm

Status and results:

Gi running. ;I
Gh terminated.

Fitness function wvalue: 3.086774282372291E-3
Optimization terminated:

nmaxinum number of generations exceeded.
K| b
Final point:
1 2
0.5994974 0.99947
Kl i

Vectorize Option

The genetic algorithm usually runs faster if you vectorize the fitness function.
This means that the genetic algorithm only calls the fitness function once, but
expects the fitness function to compute the fitness for all individuals in the
current population at once. To vectorize the fitness function,

e Write the M-file that computes the function so that it accepts a matrix with
arbitrarily many rows, corresponding to the individuals in the population.
For example, to vectorize the function

flxy, x9) = x§—2x1x2+6x1+x§—6x2
write the M-file using the following code:
z =X(:,1).72 - 2*x(:,1).*x(:,2) + 6*x(:,1) +x(:,2).72 - 6*x(:,2);

The colon in the first entry of x indicates all the rows of x, so that x(:, 1) is
a vector. The . " and .* operators perform element-wise operations on the
vectors.

® Set the Vectorize option to On.

Note The fitness function must accept an arbitrary number of rows to use
the Vectorize option.

4-55

4 Using the Genetic Algorithm

The following comparison, run at the command line, shows the improvement in
speed with Vectorize set to On.

ticj;ga(@rastriginsfcn,20);toc
elapsed_time =

4.3660
options=gaoptimset('Vectorize','on');
ticj;ga(@rastriginsfcn,20,options);toc

elapsed_time =

0.5810

4-56

Using Direct Search

Overview of the Pattern Search Tool
(p. 5-2)

Performing a Pattern Search from the
Command Line (p. 5-14)

“Setting Pattern Search Options” on
page 5-19

Provides an overview of the Pattern Search Tool.

Explains how to perform a pattern search from the
command line.

Explains how to set options for a pattern search.

5 Using Direct Search

Overview of the Pattern Search Tool

The section provides an overview of the Pattern Search Tool, the graphical user
interface (GUI) for performing a pattern search. This section covers the
following topics:

® “Opening the Pattern Search Tool” on page 5-2

¢ “Defining a Problem in the Pattern Search Tool” on page 5-3

® “Running a Pattern Search” on page 5-5

¢ “Example — A Constrained Problem” on page 5-6

® “Pausing and Stopping the Algorithm” on page 5-8

® “Displaying Plots” on page 5-8

® “Setting Options” on page 5-9

* “Importing and Exporting Options and Problems” on page 5-10

® “Generate M-File” on page 5-13

Opening the Pattern Search Tool

To open the tool, enter

psearchtool

at the MATLAB prompt. This opens the Pattern Search Tool, as shown in the
following figure.

Overview of the Pattern Search Tool

Click to display descriptions of options

=k
File Help
Enter objective function——- objective function: | Options: .
Enter start point L oo ine [=
Constraints: Poll method: |Positive basis 2N LI
U b ds:
[AET LIt Complete poll: |Off LI
Loweer bounds:
Linear inegualities: A= = Folling arder: |Consecutive LI
Linear equalities: Aeg= heg=
~Plat:
Flotinterval: |1 Search
[Bestfunction value [Mesh size
[Function count [Best paint
Mesh
[Custom function: I
~Run solver
Start the pattern search ——+ gtan | Pause | Stop | Cache
Current iteration: I
Status and results: Stopping criteria
Results are displayed here
Qutput
Final paint:
Display to command window
[+ Vectorize
Export to Workspace... |

Defining a Problem in the Pattern Search Tool
You can define the problem you want to solve in the following fields:

5-3

5 Using Direct Search

5-4

¢ Objective function — The function you want to minimize. Enter a handle to
an M-file function that computes the objective function. “Writing an M-File
for the Function You Want to Optimize” on page 1-5 describes how to write
the M-file.

® Start point — The starting point for the pattern search algorithm

Note Do not use the Editor/Debugger to debug the M-file for the objective
function while running the Pattern Search Tool. Doing so results in Java
exception messages in the Command Window and makes debugging more
difficult. Instead, call the objective function directly from the command line or
pass it to the function patternsearch. To facilitate debugging, you can export
your problem from the Pattern Search Tool to the MATLAB workspace, as
described in “Importing and Exporting Options and Problems” on page 5-10.

The following figure shows these fields for the example described in “Example:
Finding the Minimum of a Function” on page 3-6.

Objective function: |@ps_examp|e

Start paint: 2117

Constraints:

Linear inegualities: A= — b= —
Linear equalities: Aeg= — heg= —
Bounds: Lower:— Upper:—

Constrained Problems
You can enter any constraints for the problem in the following fields in the
Constraints pane:

¢ Linear inequalities — Enter the following for inequality constraints of the
form Ax<b:
= Enter the matrix A in the A = field.
= Enter the vector b in the b = fields.

¢ Linear equalities — Enter the following for equality constraints of the form
Aeq x = beq:
= Enter the matrix Aeq in the Aeq = field.

Overview of the Pattern Search Tool

= Enter the vector beq in the beq = field.
* Bounds — Enter the following information for bounds constraints of the
form [b<x and x<ub:
= Enter the vector 1b for the lower bound in the Lower = field.
= Enter the vector ub in the Upper = field.

Leave the fields corresponding to constraints that do not appear in the problem
empty.

Running a Pattern Search
To run a pattern search, click Start in the Run solver pane. When you do so,

¢ The Current iteration field displays the number of the current iteration.
¢ The Status and results pane displays the message “Pattern search
running.”

When the pattern search terminates, the Status and results pane displays

® The message “Pattern search terminated.”
® The objective function value at the final point
® The reason the pattern search terminated

¢ The coordinates of the final point

The following figure shows this information displayed when you run the
example in “Example: Finding the Minimum of a Function” on page 3-6.

Status and results:

Pattern search terminated.

Objective function walue: -1.999999237080392
Optimization terminated:

Current Mesh size 9.537e-007 is less than 'TolHJ

=
4 | »

Flnal paint

Obijective function value at final point

1 2
471239 |7.62939-.. Coordinates of final point

5-5

5 Using Direct Search

Example — A Constrained Problem

This section presents an example of performing a pattern search on a
constrained minimization problem. The example minimizes the function

Fx) = %xTHx +fo
where

36 17 19 12 8 15
173318117 14
o - 19184313 8 16
121113186 11
8 7 8 69 8
115 14 16 11 8 29|

f=[20 15 21 18 29 24]

subject to the constraints

A-x<b
Aeq -x = beq
where

A=1873 490

b= 1

718333
Acq - [05158
267118
100000

beq = [84 62 65 1]

Performing a Pattern Search on the Example
To perform a pattern search on the example, first enter

Overview of the Pattern Search Tool

psearchtool

to open the Pattern Search Tool. Then set Objective function to

@lincontest?

an M-file included in the toolbox that computes the objective function for the
example. Because the matrices and vectors defining the starting point and
constraints are large, it is more convenient to set their values as variables in
the MATLAB workspace first and then enter the variable names in the Pattern
Search Tool. To do so, enter

x0=[210910];
Aineq = [-8 7 3 -4 9 0];

bineq = [7];
Aeq = [718333;505158;267118;100000];
beq = [84 62 65 1];

Then, enter the following in the Pattern Search Tool:

¢ Set Initial point to x0.
¢ Set the following Linear inequalities:
= Set A =to Aineq.
= Set b =to bineq.
= Set Aeq = to Aeq.
= Set beq = to beq.
The following figure shows these settings in the Pattern Search Tool.

Objective function: |@Iincontest?

Start paint:]

Constraints:

Linear inegualities: A= Wineg b= hineg
Linear equalities: Aeg= |Aeqg beg=|beqg
Bounds: Lower = Upper=

Then click Start to run the pattern search. When the search is finished, the
results are displayed in Status and results pane, as shown in the following
figure.

5-7

5 Using Direct Search

Run solver
Start I | |
Current iteration: IETD

Status and results:

Warning: Matrix is close to singular or badly sc:a;l
Results may be inaccurate. RCOND = 0.000

Objective function walue: 2159.0301491112905

Optimization terminated:

Current mesh size 9.5367e-007 is less than 'TollMe

-

4| | »
Final paint:

1 2 3 4 a
1.001 -2.30269 951315 -0.04738 -019772
4 | 2|

Pausing and Stopping the Algorithm

While pattern search is running, you can

¢ Click Pause to temporarily suspend the algorithm. To resume the algorithm
from the point at which you paused, click Resume.

¢ Click Stop to stop the algorithm. The Status and results pane displays the
objective function value of the current point at the moment you clicked Stop.

Displaying Plots
The Plots pane, shown in the following figure, enables you to display various
plots of the results of a pattern search.

Flots

Flotinterval: |1

[Bestfunction value [Mesh size

[Function count [Best point

[Custorn function: I

Select the check boxes next to the plots you want to display. For example, if you
select Best function value and Mesh size, and run the example described in

5-8

Overview of the Pattern Search Tool

“Example: Finding the Minimum of a Function” on page 3-6, the tool displays
the plots shown in the following figure.

lolx]
File Edit WYiew Insert Tools Window Help
Best function value: -1.6649
Br------- P P P
R e
© 1 1 1 1 1 1 1 1 |
= 1 1 1 1 1 1 1 1 |
S 2f----- bosoenes bosoenes bosoenes
B 1 1 1 1 1 1 1 1 |
1= i H
= Ot
oo
2 1 1 1 1 1 1 1 hi h
0 1 2 3 4 & B 7 8 9
lterati
Curren?rgelgtnpoint
0
E -t E
o
o
w 2r B
i)
=
€ 3r b
=
3 4p 1
5 |
stop | 1 X 2
MNurmber of variables (2)

The upper plot displays the objective function value at each iteration. The
lower plot displays the coordinates of the point with the best objective function
value at the current iteration.

Note When you display more than one plot, clicking on any plot displays a
larger version of it in a separate window.

“Plot Options” on page 6-4 describes the types of plots you can create.
Setting Options

You can set options for a pattern search in the Options pane, shown in the
figure below.

5-9

5 Using Direct Search

5-10

Options: s

=1 Pall |
Pall methad: |Positive basis 2N =l
Complete poll: |Off LI
Folling arder: |Consecutive LI

Search |

Mesh |

Cache |

Stopping criteria |

output |

Display to command window |

ectorize |

For a detailed description of the available options, see “Pattern Search
Options” on page 6-19.

Setting Options as Variables in the MATLAB workspace.

You can set numerical options either directly, by typing their values in the
corresponding edit box, or by entering the name of a variable in the MATLAB
workspace that contains the option values. For options whose values are large
matrices or vectors, it is often more convenient to define their values as
variables in the MATLAB workspace.

Importing and Exporting Options and Problems

You can export options and problem structures from the Pattern Search Tool
to the MATLAB workspace, and later import them in a subsequent session of
the tool. This provides an easy way to save your work for future sessions of the

Overview of the Pattern Search Tool

Pattern Search Tool. The following sections describe how to import and export
options and problem structures.

Exporting Options, Problems, and Results

After working on a problem using the Pattern Search Tool, you can export the
following information to the MATLAB workspace:

¢ The problem definition, including
= The objective function
= The start point
= Constraints on the problem

¢ The current options

® The results of the algorithm

To do so, click the Export button or select Export to Workspace from the File
menu. This opens the dialog box shown in the following figure.

-} Export To Workspace] 5
[~ Export problem and options to a MATLAB stucture named: I psproblem

[Include information needed to resume this run

™ Export options to a MATLAE stucture named: I psoptions
[~ Export results to a MATLAE stucture named: I paresults

0K | Eancell

The dialog provides the following options:

® To save the objective function and options in a MATLAB structure, select
Export problem and options to a MATLAB structure named and enter a
name for the structure.

If you have run a pattern search in the current session and you select
Include information needed to resume this run, the final point from the
last search is saved in place of Start point. Use this option if you want to run
the pattern search at a later time from the final point of the last search.
See “Importing a Problem” on page 5-13.

® To save only the options, select Export options to a MATLAB structure
named and enter a name for the options structure.

5-11

5 Using Direct Search

5-12

® To save the results of the last run of the algorithm, select Export results to
a MATLAB structure named and enter a name for the results structure.

Example — Running patternsearch on an Exported Problem

To export the problem described in “Example — A Constrained Problem” on
page 5-6 and perform a pattern search on it using the function patternsearch
at the command line, do the following steps:

1 Click Export to Workspace.

2 In the Export to Workspace dialog box, enter a name for the problem
structure, such as my_psroblem, in the Export problems and options to a
MATLAB structure named field.

3 Call the function patternsearch with my psproblem as the input argument.

[x fval] = patternsearch(my_psproblem)

This returns

X =

1.0010 -2.3027 9.5131 -0.0474 -0.1977 1.3083

fval =

2.1890e+003

See “Performing a Pattern Search from the Command Line” on page 5-14 for
form information.

Importing Options

To import an options structure for a pattern search from the MATLAB
workspace, select Import Options from the File menu. This opens a dialog box
that displays a list of the valid pattern search options structures in the
MATLAB workspace. When you select an options structure and click Import,
the Pattern Search Tool resets its options to the values in the imported
structure.

Overview of the Pattern Search Tool

Note You cannot import options structures that contain any invalid option
fields. Structures with invalid fields are not displayed in the Import Pattern
Search Options dialog box.

You can create an options structure in either of the following ways:

e Calling psoptimset with options as the output

® By saving the current options from the Export to Workspace dialog box in
the Pattern Search Tool

Importing a Problem

To import a problem that you previously exported from the Pattern Search
Tool, select Import Problem from the File menu. This opens the dialog box
that displays a list of the pattern search problem structures in the MATLAB
workspace. When you select a problem structure and click OK, the Pattern
Search Tool resets the problem definition and the options to the values in the
imported structure. In addition, if you selected Include information needed
to resume this run when you created the problem structure, the tool resets
Start point to the final point of the last run prior to exporting the structure.

See “Exporting Options, Problems, and Results” on page 5-11.

Generate M-File

To create an M-file that runs a pattern search using the objective function and
options you specify in the Pattern Search Tool, select Generate M-File from
the File menu and save the M-file in a directory on the MATLAB path. Calling
this M-file at the command line returns the same results as the Pattern Search
Tool, using the fitness function and options settings that were in place when
you generated the M-file.

5-13

5 Using Direct Search

5-14

Performing a Pattern Search from the Command Line

As an alternative to using the Pattern Search Tool, you can call the function
patternsearch at the command line. This section explains how to do so and
covers the following topics:

¢ “Performing a Pattern Search with the Default Options” on page 5-14

® “Setting Options” on page 5-16

® “Using Options and Problems from the Pattern Search Tool” on page 5-18

Performing a Pattern Search with the Default
Options

This section describes how to perform a pattern search with the default
options.

Pattern Search on Unconstrained Problems
For an unconstrained problem, call patternsearch with the syntax

[x fval] = patternsearch(@objectfun, x0)
The output arguments are

® x — The final point
e fval — The value of the objective function at x

The required input arguments are

® @objectfun — A function handle to the objective function objectfun, which
you can write as an M-file. See “Writing an M-File for the Function You Want
to Optimize” on page 1-5 to learn how to do this.

® x0 — The initial point for the pattern search algorithm

As an example, you can run the example described in “Example: Finding the
Minimum of a Function” on page 3-6 from the command line by entering

[x fval] = patternsearch(@ps_example, [2.1 1.7])

This returns

Optimization terminated:
Current mesh size 9.5367e-007 is less than 'TolMesh'.

Performing a Pattern Search from the Command line

-4.7124 -0.0000

fval =

-2.0000

Pattern Search on Constrained Problems
If your problem has constraints, use the syntax

[x fval] = patternsearch(@objfun, x0, A, b Aeq, beq, 1lb, ub)

where

® Ais a matrix and b is vector that represent inequality constraints of the form
Ax<b.

® Aeq is a matrix and beq is a vector that represent equality constraints of the
form Aeq x = beq .

¢ 1b and ub are vectors representing bound constraints of the form /b <x and
x <ub , respectively.

You only need to pass in the constraints that are part of the problem. For
example, if there are no bound constraints, use the syntax

[x fval] = patternsearch(@objfun, x0, A, b Aeq, beq)

Use empty brackets [] for constraint arguments that are not needed for the
problem. For example, if there are no inequality constraints, use the syntax

[x fval] = patternsearch(@objfun, x0, []1, [], Aeq, beq, 1lb, ub)

Additional Output Arguments

To get more information about the performance of the pattern search, you can
call patternsearch with the syntax

[x fval exitflag output] = patternsearch(@objfun, x0)

Besides x and fval, this returns the following additional output arguments:

5-15

5 Using Direct Search

® exitflag — Integer indicating whether the algorithm was successful
® output — Structure containing information about the performance of the
solver

See the reference page for patternsearch for more information about these
arguments.

Setting Options

You can specify any of the options that are available in the Pattern Search Tool
by passing an options structure as an input argument to patternsearch using
the syntax

[x fval] = patternsearch(@fitnessfun, nvars, A, b, Aeq, beq, 1lb,
ub, options)

If the problem is unconstrained, you must pass in empty brackets for the
constraint arguments using the syntax

[x fval] =

patternsearch(@fitnessfun,nvars,[],[1,[1,[1,[]1,[],0ptions)
You create the options structure using the function psoptimset.

options = psoptimset

This returns the options structure with the default values for its fields.

options =
TolMesh: 1.0000e-006
TolX: 1.0000e-006
TolFun: 1.0000e-006
TolBind: 0.0010
MaxIteration: '100*numberofvariables’
MaxFunEvals: '2000*numberofvariables’
MeshContraction: 0.5000
MeshExpansion: 2
MeshAccelerator: 'off'
MeshRotate: 'on'
InitialMeshSize: 1
ScaleMesh: ‘'on'
MaxMeshSize: Inf

5-16

Performing a Pattern Search from the Command line

PollMethod: 'positivebasis2n'
CompletePoll: 'off'
PollingOrder: 'consecutive'
SearchMethod: []

CompleteSearch: 'off'
Display: 'final'
OutputFcns: []
PlotFcns: []
PlotInterval: 1
Cache: 'off'
CacheSize: 10000
CacheTol: 2.2204e-016
Vectorized: 'off'

The function patternsearch uses these default values if you do not pass in
options as an input argument.

The value of each option is stored in a field of the options structure, such as
options.MeshExpansion. You can display any of these values by entering
options followed by the name of the field. For example, to display the mesh
expansion factor for the pattern search, enter

options.MeshExpansion
ans =

2

To create an options structure with a field value that is different from the
default, use the function psoptimset. For example, to change the mesh
expansion factor to 3 instead of its default value 2, enter

options = psoptimset('MeshExpansion', 3)

This creates the options structure with all values set to their defaults except
for MeshExpansion, which is set to 3.

If you now call patternsearch with the argument options, the pattern search
uses a mesh expansion factor of 3.

If you subsequently decide to change another field in the options structure,
such as setting P1lotFcns to @psplotmeshsize, which plots the mesh size at
each iteration, call psoptimset with the syntax

5-17

5 Using Direct Search

5-18

options = psoptimset(options, 'PlotFcns', @psplotmeshsize)

This preserves the current values of all fields of options except for PlotFcns,
which is changed to @plotmeshsize. Note that if you omit the options input
argument, psoptimset resets MeshExpansion to its default value, which is 2. 0.

You can also set both MeshExpansion and PlotFcns with the single command

options = psoptimset('MeshExpansion',3,'PlotFcns',@plotmeshsize)

Using Options and Problems from the Pattern
Search Tool

As an alternative to creating the options structure using psoptimset, you can
set the values of options in the Pattern Search Tool and then export the options
to a structure in the MATLAB workspace, as described in “Exporting Options,
Problems, and Results” on page 5-11. If you export the default options in the
Pattern Search Tool, the resulting options structure has the same settings as
the default structure returned by the command

options = psoptimset

except for the default value of 'Display’', which is 'final' when created by
psoptimset, but 'none' when created in the Pattern Search Tool.

You can also export an entire problem from the Pattern Search Tool and run it
from the command line. See “Example — Running patternsearch on an
Exported Problem” on page 5-12 for an example.

Sefting Pattern Search Options

Setting Pattern Search Options

This section explains how to set options for a pattern search.

¢ “Poll Method” on page 5-19

® “Complete Poll” on page 5-21

¢ “Using a Search Method” on page 5-25

¢ “Mesh Expansion and Contraction” on page 5-28
® “Mesh Accelerator” on page 5-33

¢ “Cache Options” on page 5-35

® “Setting Tolerances for the Solver” on page 5-37

Poll Method

At each iteration, a pattern search polls the points in the current mesh — that
is, it computes the objective function at the mesh points to see if there is one
whose function value is less than the function value at the current point. “How
Pattern Search Works” on page 3-13 provides an example of polling. You can
specify the pattern that defines the mesh by the Poll method option. The
default pattern, Positive basis 2N, consists of the following 2N directions,
where N is the number of independent variables for the objective function.

[100...0]
[010...0]
[00.(.)....1]
[-1 00...0]
[0 -10...0]
(0 00..-1]

For example, if objective function has three independent variables, the
Positive basis 2N, consists of the following six vectors.

5-19

5 Using Direct Search

5-20

[100]
[010]
(00 1]
100
[0-10]
l00-1]

Alternatively, you can set Poll method to Positive basis NP1, the pattern
consisting of the following N + 1 directions.

[100...0]
[010...0]
w06m1]
[-1-1-1..-1]

For example, if objective function has three independent variables, the
Positive basis Npf1, consists of the following four vectors.

[100]
(010
[001]
[1-1-1]

A pattern search will sometimes run faster using Positive basis Np1 as the
Poll method, because the algorithm searches fewer points at each iteration.
For example, if you run a pattern search on the example described in “Example
— A Constrained Problem” on page 5-6, the algorithm performs 2080 function
evaluations with Positive basis 2N, the default Poll method, but only 1413
function evaluations using Positive basis 2P1.

Sefting Pattern Search Options

However, if the objective function has many local minima, using Positive
basis 2N as the Poll method might avoid finding a local minimum that is not
the global minimum, because the search explores more points around the
current point at each iteration.

Complete Poll

By default, if the pattern search finds a mesh point that improves the value of
the objective function, it stops the poll and sets that point as the current point
for the next iteration. When this occurs, some mesh points might not get polled.
Some of these unpolled points might have an objective function value that is
even lower than the first one the pattern search finds.

For problems in which there are several local minima, it is sometimes
preferable to make the pattern search poll all the mesh points at each iteration
and choose the one with the best objective function value. This enables the
pattern search to explore more points at each iteration and thereby potentially
avoid a local minimum that is not the global minimum. You can make the
pattern search poll the entire mesh setting Complete poll to On in Poll options.

Example — Using a Complete Poll in a Pattern Search
As an example, consider the following function.

2 2 2 2
x]+x5-25 for x] +x5<25

f(xls xz) =

Xt (x5-9)°—16 for x5+ (xy-9)° <16

0 otherwise

The following figure shows a plot of the function.

5-21

5 Using Direct Search

i
'v'lv
il
'Lq l";' I

-104

-154

-20 4

Local minimum at (0, 9) Global minimum at (0, 0)

The global minimum of the function occurs at (0, 0), where its value is -25.
However, the function also has a local minimum at (0, 9), where its value is -16.

To create an M-file that computes the function, copy and paste the following
code into a new M-file in the MATLAB Editor.

function z = poll_example(x)

if x(1)"2 + x(2)"2 <= 25
z = x(1)"2 + x(2)"2 - 25;
elseif x(1)"2 + (x(2) - 9)"2 <= 16
z = x(1)"2 + (x(2) - 9)"2 - 16;
else z = 0;
end

Then save the file as poll_example.min a directory on the MATLAB path.

5-22

Sefting Pattern Search Options

To run a pattern search on the function, enter the following in the Pattern
Search Tool:

® Set Objective function to @poll_example.
® Set Start point to [0 5].
¢ Set Level of display to Iterative in Display to command window options.

Click Start to run the pattern search with Complete poll set to Off, its default
value. The Pattern Search Tool displays the results in the Status and results
pane, as shown in the following figure.

Status and results:

Pattern search running. ;I
Pattern search terminated.

Objective function walue: -16.0

Optimization terminated:

Current mesh size 9.5367e-007 is less than 'TolMesh'.

=
4| | »

Final paint:

1 2
0 49

The pattern search returns the local minimum at (0, 9). At the initial point,
(0, 5), the objective function value is 0. At the first iteration, the search polls
the following mesh points.

£(0,5)+(1,0)=A1,5 =0
0, 5) + (0, 1)) = R0, 6) = -7

As soon as the search polls the mesh point (0, 6), at which the objective function
value is less than at the initial point, it stops polling the current mesh and sets
the current point at the next iteration to (0, 6). Consequently, the search moves
toward the local minimum at (0, 9) at the first iteration.You see this by looking
at the first two lines of the command line display.

Iter f-count MeshSize f(x) Method
0 1 1 0 Start iterations
1 3 2 -7 Successful Poll

Note that the pattern search performs only two evaluations of the objective
function at the first iteration, increasing the total function count from 1 to 3.

5-23

5 Using Direct Search

5-24

Next, set Complete poll to On and click Start. The Status and results pane
displays the following results.

Status and results:

Pattern search terminated. ;I
Objective function walue: -25.0

Optimization terminated:

Current Mesh size 9.537e-007 is less than 'TolM

=
4| | »

Final paint:

1 2
0 0

This time, the pattern search finds the global minimum at (0, 0). The difference
between this run and the previous one is that with Complete poll set to On, at
the first iteration the pattern search polls all four mesh points.

f0,5)+(1,0)=f1,5)=0
A0, 5) + (0, 1)) =f(0,6) = -6
f(0,5) +(-1,0) =f(-1,5) =0
10, 5) + (0, -1)) = 0, 4) = -9

Because the last mesh point has the lowest objective function value, the
pattern search selects it as the current point at the next iteration. The first two
lines of the command-line display show this.

Iter f-count MeshSize f(x) Method
0 1 1 0 Start iterations
1 5 2 -9 Successful Poll

In this case, the objective function is evaluated four times at the first iteration.
As a result, the pattern search moves toward the global minimum at (0, 0).

The following figure compares the sequence of points returned when Complete
poll is set to OFff with the sequence when Complete poll is On.

Sefting Pattern Search Options

14 T T T
O Initial point
12+ * Complete poll off |
+ Complete poll on
10f R
8r Local minimum i
6 - u
4 L -
2r L T
Global minimum
o - u
_2 - .
_4 - .
_6 Il Il Il Il Il Il Il Il Il

-6 -4 -2 0 2 4 6 8 10 12 14

Using a Search Method

In addition to polling the mesh points, the pattern search algorithm can
perform an optional step at every iteration, called search. At each iteration, the
search step applies another optimization method to the current point. If this
search does not improve the current point, the poll step is performed.

The following example illustrates the use of a search method on the problem
described in “Example — A Constrained Problem” on page 5-6. To set up the
example, enter the following commands at the MATLAB prompt to define the
initial point and constraints.

X0 =[21091 0];

Aineq = [-8 7 3 -4 90];

bineq = [7];

Aeq = [718333;505158;267118;100000];
beq = [84 62 65 1];

5-25

5 Using Direct Search

Then enter the settings shown in the following figure in the Pattern Search
Tool.

Ohjective function: |@Iincuntest?

Start point: 0
Constraints:
Linear inequalities: A= W h= W
Linear equalities: Aeg= L%q— heg= F

Bounds: Lowwer = Upper=

~Plot

Plotinterval: |1

v Bestfunction value [Mesh size

¥ Function count [Best point

[Custam function: |

For comparison, click Start to run the example without a search method. This
displays the plots shown in the following figure.

5-26

Sefting Pattern Search Options

Best Function Value: 2189.0301

4000
o 3500
= -
©
>
§ 30001
13]
=
=)
Y 2500}
2000 1 1 1 1 1 1
0 50 100 150 200 250 300
Iteration
Total Function Count: 2080
201
©
2
2
2 W&"
g ué o?
€ L
3 10 ’0 %0 '0 X o
o
c
_% 51 M :0‘ O O 000000 ¢ ¢
S o : 0 0000’0’ ¢ 000 0’
T (TSI 000000 40040090 | QOQWQ ; X ; J
0 50 100 150 200 250 300

stop |

Iteration

To see the effect of using a search method, select Positive Basis Np1 in the
Search method field in Search options. This sets the search method to be a
pattern search using the pattern for Positive basis Np1. Then click Start to
run the genetic algorithm. This displays the following plots.

5-27

5 Using Direct Search

Best Function Value: 2189.03

4000

w

a1

o

o
T

3000+

Function value

2500

2000 L L L L L J
0 20 40 60 80 100 120

Iteration
Total Function Count: 1012

w
o
1

CNNOO & WO

N
al
T

N
o
T

o, 0o u0 ouno ¢ ¢

=
o

0 X4 .“‘::‘

® 0O 60 6 O O O ¢

5F %
VU® o o 00 % O 4
Om”y&w:"y:‘?“ ; ®

Function count per interval
=
(53]
T

L J
0 20 40 60 80 100 120

stop I Iteration

Note that using the search method reduces the total function count — the
number of times the objective function was evaluated — by almost 50 percent,
and reduces the number of iterations from 270 to 120.

Mesh Expansion and Contraction

The Mesh expansion and Mesh contraction options control how much the
mesh size is expanded or contracted at each iteration. With the default Mesh
expansion value of 2, the pattern search multiplies the mesh size by 2 after
each successful poll. With the default Mesh contraction value of 0.5, the
pattern search multiplies the mesh size by 0.5 after each unsuccessful poll.

You can view the expansion and contraction of the mesh size during the pattern
search by selecting Mesh size in the Plots pane.

5-28

Sefting Pattern Search Options

Flots

Flotinterval: |1

[Bestfunction value

[Function count [Best point

[Custorn function: I

To also display the values of the mesh size and objective function at the
command line, set Level of Display to Iterative in the Display to command
window options.

= Dizplay to command windaw: |

Level of display: lterative LI

When you run the example described in “Example — A Constrained Problem”
on page 5-6, the Pattern Search Tool displays the following plot.

x 10%° Current Mesh Size: 1.9073e-006
14 .
12
10
sl
6l
4k
2l
0 : -:.L i i i i i
0 50 100 150 200 250 300
_sp | Iterations

To see the changes in mesh size more clearly, change the y-axis to logarithmic
scaling as follows:

1 Select Axes Properties from the Edit menu in the plot window.

5-29

5 Using Direct Search

2 In the Properties Editor, select the Y tab.

3 Set Scale to Log.

The following figure shows these settings in the Property Editor.

il
Click the Y mbwmpenies far; Iaxes: j ﬂﬂ

% ¥ | z| swe | aspect | Liohts | viewnoint | info

Label: IMesh size Propenies...l
Color: IEIIack =] custom cala |

F...
Location: ILeﬂ LI
Grid: I Show
Limits: W Auto ID_DD 140000000000.00

Ticks: I Auto |[0.0 2.0E10 4.0E10 6.0E10 8.0E10 1.0E11

Labels: M auto o i’
2
4 =l

Scale: © Linear ' Mormal
Select log ————— Log ' Reverse
QK | Cancel | Apply Help |

[T Irmmediate apply
Object change cancelled

When you click OK, the plot appears as shown in the following figure.

5-30

Sefting Pattern Search Options

Current Mesh Size: 1.9073e-006

50 100 150 200 250 300

0
ﬂl Iterations
First unsuccessful poll
The first 37 iterations result in successful polls, so the mesh sizes increase

steadily during this time. You can see that the first unsuccessful poll occurs at
iteration 38 by looking at the command-line display for that iteration.

36 39 6.872e+010 3486 Successful Poll
37 40 1.374e+011 3486 Successful Poll
38 43 6.872e+010 3486 Refine Mesh

Note that at iteration 37, which is successful, the mesh size doubles for the next
iteration. But at iteration 38, which is unsuccessful, the mesh size is multiplied
0.5.

To see how Mesh expansion and Mesh expansion affect the pattern search,
make the following changes:

* Set Mesh expansion to 3.0.
¢ Set Mesh contraction to 0.75.

5-31

5 Using Direct Search

5-32

=l hesh
Initial size: i
Mz size: |Inf
Accelerator: |Off LI
Rotate: |On LI
Scale: |On LI
Expansion factor. 3.0 Set Expansion factor to 3.0.
Contraction factar: [0.75 Set Contraction factor to 0.75.

Then click Start. The Status and results pane shows that the final point is
approximately the same as with the default settings of Mesh expansion and
Mesh contraction, but that the pattern search takes longer to reach that
point.

Status and results:

Warning: Matrix is close to singqular or badly scaled. _AI
Fesults may be inaccurate. RCOND = 0.000000e+000.Fat

Objectiwve function walue: 2159.0419046259915

Maximum nuwmber of iterations exceeded:

Increase OPTIONS.MaxIter.

. . o

Final point:
1 2 3 4 5 B
1.00086 -2 30267 951334 -0.04768 -0.19745 1.30814

The algorithm halts because it exceeds the maximum number of iterations,
whose value you can set in the Max iteration field in the Stopping criteria
options. The default value is 100 times the number of variables for the objective
function, which is 6 in this example.

When you change the scaling of the y-axis to logarithmic, the mesh size plot
appears as shown in the following figure.

Sefting Pattern Search Options

Current Mesh Size: 0.0019229

Mesh size
[
(=}
T

10~ I I

stop 0 100 200 300 400 500 600 700
Iteration

Note that the mesh size increases faster with Mesh expansion set to 3.0, as
compared with the default value of 2.0, and decreases more slowly with Mesh
contraction set to 0.75, as compared with the default value of 0. 5.

Mesh Accelerator

The mesh accelerator can make a pattern search converge faster to the optimal
point by reducing the number of iterations required to reach the mesh
tolerance. When the mesh size is below a certain value, the pattern search

contracts the mesh size by a factor smaller than the Mesh contraction factor.

Note We recommend that you only use the mesh accelerator for problems in
which the objective function is not too steep near the optimal point, or you
might lose some accuracy. For differentiable problems, this means that the
absolute value of the derivative is not too large near the solution.

To use the mesh accelerator, set Accelerator to On in Mesh options. When you
run the example describe in “Example — A Constrained Problem” on page 5-6,
the number of iterations required to reach the mesh tolerance is 246, as
compared with 270 when Accelerator is set to Off. You can see the effect of the
mesh accelerator by comparing the mesh sizes after iteration 200, as shown in
the following figure:

5-33

5 Using Direct Search

x10™ Current Mesh Size: 1.9073e-006
Accelerator off
[}
N
2]
il
[}
=
n i i i i i
stop .'5 220 225 230 235 240
Iteration
x 107 Current Mesh Size: 3.0518e-005
© Accelerator on
g
[}
=
n i i / () i i
stop .'5 220 225 230 235 240
Iteration

Accelerator first applied

In both cases, the mesh sizes are the same until iteration 226, but differ at
iteration 227. The MATLAB Command Window displays the following lines for
iterations 226 and 227 with Accelerator set to Off.

5-34

Sefting Pattern Search Options

Iter f-count MeshSize f(x) Method
226 1501 6.104e-005 2189 Refine Mesh
227 1516 3.052e-005 2189 Refine Mesh

Note that the mesh size is multiplied by 0.5, the default value of Mesh
contraction factor.

For comparison, the Command Window displays the following lines for the
same iteration numbers with Accelerator set to On.

Iter f-count MeshSize f(Xx) Method
226 1501 6.104e-005 2189 Refine Mesh
227 1516 1.526e-005 2189 Refine Mesh

In this case the mesh size is multiplied by 0. 25.

Cache Options

Typically, at any given iteration of a pattern search, some of the mesh points
might coincide with mesh points at previous iterations. By default, the pattern
search recomputes the objective function at these mesh points even though it
has already computed their values and found that they are not optimal. If
computing the objective function takes a long time — say, several minutes —
this can make the pattern search run significantly longer.

You can eliminate these redundant computations by using a cache, that is, by
storing a history of the points that the pattern search has already visited. To
do so, set Cache to On in Cache options. At each poll, the pattern search checks
to see whether the current mesh point is within a specified tolerance,
Tolerance, of a point in the cache. If so, the search does not compute the
objective function for that point, but uses the cached function value and moves
on to the next point.

Note When Cache is set to On, the pattern search might fail to identify a
point in the current mesh that improves the objective function because it is
within the specified tolerance of a point in the cache. As a result, the pattern
search might run for more iterations with Cache set to On than with Cache
set to Off. It is generally a good idea to keep the value of Tolerance very
small, especially for highly nonlinear objective functions.

5-35

5 Using Direct Search

To illustrate this, select Best function value and Function count in the Plots
pane and run the example described in “Example — A Constrained Problem”
on page 5-6 with Cache set to Off. After the pattern search finishes, the plots
appear as shown in the following figure.

Best Function Value: 2189.0301

4000
£ 3500 -
®©
>
§ 30001
B
c
=}
T 2500
2000 i i ; ; ; j
0 50 100 150 200 250 300
Iteration
Total Function Count: 2080
= 20
2
g
g5 AR S
g o g’ Teh
c
310 % " o0 P
(]
5 W%‘“ 0 0 000000 O &
S } % ono’o. 0,000 0,
z mmvm : :
o 50 100 150 200 250 300
il Iteration

Note that the total function count is 2080.

Now, set Cache to On and run the example again. This time, the plots appear
as shown in the following figure.

5-36

Sefting Pattern Search Options

Best Function Value: 2189.0301

4000
2 3500 -
©
>
§ 30001
5
5
L 2500
2000 i i i i i i
0 50 100 150 200 250 300
Iteration
Total Function Count: 1973
< 15
g B> B RO & O R
[O NN 60 ¢ 0O 60000
< QO DWW Q000 WO O ¢
= ¢ <> 00 ¢ oo o ¢
¢ 10 04 LA AL LR AR X 2R AR
Q O RO ¢ ¢ ¢
IS ¢ WO ¢ 0 R
=] ¢ ¢ ¢
3 (AT AN AR
c 5 QOOBENOOUO 00 ¢ & ¢ 000 90099 ¢
o 900 6 60 WH WO o ¢ ¢
B 0 0 & ¢ 4
c ¢ ¢ 00 00 000 6 O O O
T 0 nmm‘ ‘MQQO 00‘ ¢ @ 0‘

L L
150 200 250 300
Iteration

\&_

[=]

-

>
a
S
=
o
S

This time, the total function count is reduced to 1973.

Setting Tolerances for the Solver

Tolerance refers to how small a parameter, such a mesh size, can become before
the search is halted or changed in some way. You can specify the value of the
following tolerances:

® Mesh tolerance — When the current mesh size is less than the value of
Mesh tolerance, the algorithm halts.

* X tolerance — After a successful poll, if the distance from the previous best
point to the current best point is less than the value of X tolerance, the
algorithm halts.

¢ Function tolerance — After a successful poll, if the distance from the
previous best point to the current best point is less than the value of X
tolerance, the algorithm halts.

¢ Bind tolerance — Bind tolerance applies to constrained problems and
specifies how close a point must get to the boundary of the feasible region

5-37

5 Using Direct Search

5-38

before a linear constraint is considered to be active. When a linear constraint
is active, the pattern search polls points in directions parallel to the linear
constraint boundary as well as the mesh points.

Usually, you should set Bind tolerance to be at least as large as the
maximum of Mesh tolerance, X tolerance, and Function tolerance.

Example — Setting Bind Tolerance

The following example illustrates of how Bind tolerance affects a pattern
search. The example finds the minimum of

[2 2

subject to the constraints

- 11x; +10x,5 <10
10x; - 10x, <10
Note that you can compute the objective function using the function norm. The

feasible region for the problem lies between the two lines in the following
figure.

Sefting Pattern Search Options

25
-2 -1.5 -1 -0.5 0 0.5

Feasible region

Running a Pattern Search with the Default Bind Tolerance

To run the example, enter psearchtool to open the Pattern Search Tool and

enter the following information:

® Set Objective function to inline('norm(x)"').

® Set Start point to [-1.001 -1.1].

® Select Mesh size in the Plots pane.

® Set Level of display to Iterative in the Display to command window
options.

Then click Start to run the pattern search.

The display in the MATLAB Command Window shows that the first four polls
are unsuccessful, because the mesh points do not lie in the feasible region.

Iter f-count MeshSize f(x) Method
0 1 1 1.487 Start iterations
1 1 0.5 1.487 Refine Mesh
2 1 0.25 1.487 Refine Mesh

5-39

5 Using Direct Search

3 1 0.125 1.487 Refine Mesh
4 1 0.0625 1.487 Refine Mesh

The pattern search contracts the mesh at each iteration until one of the mesh
points lies in the feasible region. The following figure shows a close-up of the
initial point and mesh points at iteration 5.

Initial Point and Mesh Points at Iteration 5

-0.9 T T T
+ Initial point
A Mesh points
-0.95f]
_1 L
A
-1.05f b
-11f A A 1
-1.15} 1
A
-1.1 -1.05 -1 -0.95 -0.9

The top mesh point, which is (-1.001, -1.0375), has a smaller objective function
value than the initial point, so the poll is successful.

Because the distance from the initial point to lower boundary line is less than
the default value of Bind tolerance, which is 0.0001, the pattern search does
not consider the linear constraint 10x; — 10x, < 10 to be active, so it does not
search points in a direction parallel to the boundary line.

Increasing the Value of Bind Tolerance

To see the effect of bind tolerance, change Bind tolerance to 0.01 and run the
pattern search again.

5-40

Sefting Pattern Search Options

This time, the display in the MATLAB Command Window shows that the first
two iterations are successful.

Iter f-count MeshSize f(x) Method
0 1 1 1.487 Start iterations
1 2 2 0.7817 Successful Poll
2 3 4 0.6395 Successful Poll

Because the distance from the initial point to the boundary is less than Bind
tolerance, the second linear constraint is active. In this case, the pattern
search polls points in directions parallel to the boundary line

10x; — 10x, = 10, resulting in successful poll. The following figure shows the
initial point with two addition search points in directions parallel to the
boundary.

T T T T T
+ Initial point

-0.6| A Search points in directions parallel to boundary 1
-0.8F 1

_l = -
-1.2F 1
-1.4r 1
-1.6F 1

-1.6 -1.4 -1.2 -1 -0.8 -0.6

The following figure compares the sequences of points during the first 20
iterations of the pattern search for both settings of Bind tolerance.

5-41

5 Using Direct Search

5-42

First 20 Iterations for Two Settings of Bind Tolerance

0.4}| + Bind tolerance =.0001 1
* Bind tolerance = .01

0.2 1

_02 - 4

-0.4f -

-0.6 1

-0.81 1

-1.2 1

-1 -08 -06 -04 -0.2 0 0.2 0.4 0.6

Note that when Bind tolerance is set to .01, the points move toward the
optimal point more quickly. The pattern search requires only 90 iterations.
When Bind tolerance is set to .0001, the search requires 124 iterations.
However, when the feasible region does not contain very acute angles, as it
does in this example, increasing Bind tolerance can increase the number of
iterations required, because the pattern search tends to poll more points.

Function Reference

Functions — Listed by Category Lists the functions in the toolbox by category.
(p. 6-2)

Genetic Algorithm Options (p. 6-3) Describes the options for the genetic algorithm.
Pattern Search Options (p. 6-19) Describes the options for pattern search.

Functions — Alphabetical List (p. 6-28) Lists the functions in the toolbox alphabetically.

6 Function Reference

Functions — Listed by Category

The Genetic Algorithm and Direct Search Toolbox provides two categories of
functions:

® Genetic algorithm

® Direct search

Genetic Algorithm

Function Description
ga Find the minimum of a function using the genetic
algorithm

gaoptimget Get values of a genetic algorithm options structure
gaoptimset Create a genetic algorithm options structure

gatool Open the Genetic Algorithm Tool

Direct Search

Function Description

patternsearch Find the minimum of a function using a pattern search
psoptimget Get values of a pattern search options structure
psoptimset Create a pattern search options structure
psearchtool Open the Pattern Search Tool

6-2

Genetic Algorithm Options

Genetic Algorithm Options

This section describes the options for the genetic algorithm. There are two
ways to specify options, depending on whether you are using the Genetic
Algorithm Tool or calling the function ga at the command line:

¢ If you are using the Genetic Algorithm Tool (gatool), you specify the options
by selecting an option from a drop-down list or by entering the value of the
option in a text field. See “Setting Options for the Genetic Algorithm” on
page 4-11.

¢ If you are calling ga from the command line, you specify the options by
creating an options structure, using the function gaoptimset. See “Setting
Options” on page 4-22. For example, to set PopulationSize to 50, enter

options = gaoptimset(PopulationSize, 50)
You can identify an identify an option in one of two ways:

® By its label, as it appears in the Genetic Algorithm Tool

¢ By its field name in the options structure
For example:
¢ Population type refers to the label of the option in the Genetic Algorithm

Tool.
® PopulationType refers to the corresponding field of the options structure.

The genetic algorithm options are divided into the following categories:

¢ “Plot Options” on page 6-4

¢ “Population Options” on page 6-5

¢ “Fitness Scaling Options” on page 6-7

e “Selection Options” on page 6-8

¢ “Reproduction Options” on page 6-10

e “Mutation Options” on page 6-10

® “Crossover Options” on page 6-12

® “Migration Options” on page 6-15

¢ “Output Function Options” on page 6-16

6-3

6 Function Reference

® “Stopping Criteria Options” on page 6-17
¢ “Hybrid Function Option” on page 6-17
® “Vectorize Option” on page 6-17

Plot Options

Plot options enable you to plot data from the genetic algorithm as it is running.
When you select plot functions and run the genetic algorithm, a plot window
displays each plot in a separate axis. You can stop the algorithm at any time
by clicking the Stop button on the display window.

Plot interval (PlotInterval) specifies the number of generations between
consecutive points in the plot.

You can choose from the following plot functions:
® Best fitness (@gaplotbestf) plots the best function value versus iteration
number in each generation.

* Expectation (@gaplotexpectation) plots the expected number of children
versus the raw scores at each generation.

® Score diversity (@gaplotscorediversity) plots a histogram of the scores at
each generation.

® Stopping (@plotstopping) plots stopping criteria levels.

® Best individual (@gaplotbestindiv) plots the vector entries of the
individual with the best fitness function value in each generation.

* Genealogy (@gaplotgenealogy) plots the genealogy of individuals. Lines
from one generation to the next are color-coded as follows:

= Red lines indicate mutation children.
= Blue lines indicate crossover children.
= Black lines indicate elite individuals.

® Scores (@gaplotscores) plots the scores of the individuals at each
generation.

* Distance (@gaplotdistance) plots the average distance between individuals
at each generation.

® Range (@gaplotrange) plots the minimum, maximum, and mean fitness
function values in each generation.

® Selection (@gaplotselection) plots a histogram of the parents.

6-4

Genetic Algorithm Options

Custom function enables you to use plot functions of your own. In the Custom
function field, enter a function handle to a custom plot function. “Example —
Creating a Custom Plot Function” on page 4-8 gives an example. “Structure of
the Plot Functions” on page 6-5 describes the structure of a plot function.

To display a plot when calling ga from the command line, set the PlotFcns field
of options to be a function handle to the plot function. For example, to display
the best fitness plot, set options as follows.

options = gaoptimset('PlotFcns , @gaplotbestf);

To display multiple plots, use the syntax
options =gaoptimset('PlotFcns , {@plotfuni, @plotfun2, ...});

where @plotfuni, @plotfun2, and so on are command-line names of plot
functions, which are in parentheses in the preceding list.

Structure of the Plot Functions
The first line of a plot function has the form

function state = plotfun(options, state, flag)
The input arguments to the function are

® options — Structure containing all the current options settings

® state — Structure containing information about the current generation. See
“The State Structure” on page 6-18.

e flag — String that tells what stage the algorithm is currently in

If you write a custom plot function, you can include additional input arguments
after flag.

Population Options

Population options enable you to specify the parameters of the population that
the genetic algorithm uses.

Population type (PopulationType) specifies the data type of the input to the
fitness function. You can set Population type to be one of the following:

® Double Vector ('doubleVector')— Use this option if the individuals in the
population have type double. This is the default.

6-5

6 Function Reference

® Bit string ('bitstring') — Use this option if the individuals in the
population are bit strings.

® Custom ('custom') — Use this option to create a population whose data type
is neither of the preceding.

If you use a custom population type, you must write your own creation,
mutation, and crossover functions that accept inputs of that population type,
and specify these functions in the following fields, respectively:

= Creation function (CreationFcn)
= Mutation function (MutationFcn)
= Crossover function (CrossoverFcn)

Population size (PopulationSize) specifies how many individuals there are in
each generation. With a large population size, the genetic algorithm searches
the solution space more thoroughly, thereby reducing the chance that the
algorithm will return a local minimum that is not a global minimum. However,
a large population size also causes the algorithm to run more slowly.

If you set Population size to a vector, the genetic algorithm creates multiple
subpopulations, the number of which is the length of the vector. The size of
each subpopulation is the corresponding entry of the vector.

Creation function (CreationFcn) specifies the function that creates the initial
population for ga. You can choose from the following functions:

® Uniform (@gacreationuniform) creates a random initial population with a
uniform distribution. This is the default.

® Custom enables you can write your own creation function, which must
generate data of the type that you specify in Population type.

Initial population (InitialPopulation) specifies an initial population for the
genetic algorithm. The default value is [], in which case ga uses the Creation
function to create an initial population. If you enter a nonempty array in the
Initial population field, the array must have Population size rows and
Number of variables columns. In this case, the genetic algorithm does not call
the Creation function.

Initial scores (InitialScores) specifies initial scores for the initial
population.

6-6

Genetic Algorithm Options

Initial range (PopInitRange) specifies the range of the vectors in the initial
population that is generated by the creation function. You can set Initial range
to be a matrix with two rows and Number of variables columns, each column
of which has the form [1b; ub], where 1b is the lower bound and ub is the
upper bound for the entries in that coordinate. If you specify Initial range to
be a 2-by-1 vector, each entry is expanded to a constant row of length Number
of variables.

Fitness Scaling Options

Fitness scaling converts the raw fitness scores that are returned by the fitness
function to values in a range that is suitable for the selection function. You can
specify options for fitness scaling in the Fitness scaling pane.

Scaling function (FitnessScalingFcn) specifies the function that performs
the scaling. The options are

® Rank (@fitscalingrank) — The default fitness scaling function, Rank, scales
the raw scores based on the rank of each individual instead of its score. The
rank of an individual is its position in the sorted scores. The rank of the most
fit individual is 1, the next most fit is 2, and so on. Rank fitness scaling
removes the effect of the spread of the raw scores.

® Proportional (@fitscalingprop) — Proportional scaling makes the scaled
value of an individual proportional to its raw fitness score.

® Top (@fitscalingtop) — Top scaling scales the top individuals equally.
Selecting Top displays an additional field, Quantity, which specifies the
number of individuals that are assigned positive scaled values. Quantity can
be an integer between 1 and the population size or a fraction between 0 and
1 specifying a fraction of the population size. The default value is 0.4. Each
of the individuals that produce offspring is assigned an equal scaled value,
while the rest are assigned the value 0. The scaled values have the form
[01/M1m001/mn001/m..].

To override the default value for Quantity at the command line, use the
following syntax:
options = gaoptimset('FitnessScalingFcn', {@fitscalingtop,
quantity})

® Shift linear (@fitscalingshiftlinear)— Shift linear scaling scales the
raw scores so that the expectation of the fittest individual is equal to a

6-7

6 Function Reference

constant multiplied by the average score. You specify the constant in the
Max survival rate field, which is displayed when you select Shift linear.
The default value is 2.

To override the default value of Max survival rate at the command line, use
the following syntax:

options = gaoptimset('FitnessScalingFcn',
{@fitscalingshiftlinear, rate})

where rate is the Max survival rate.

® Custom enables you to write your own scaling function. If your function has
no input arguments, enter it in the text box in the form emyfun. If your
function does have input arguments, enter it as a cell array of the form
{@myfun, P1, P2, ...}, where P1, P2, ... are the input arguments. Your
scaling function must have the following calling syntax.

function expection = myfun(scores, nParents, P1, P2, ...)

The input arguments to the function are
= scores — A vector of scalars, one for each member of the population
= nParents — The number of parents needed from this population

= P1, P2, ...— Additional input arguments, if any, that you want to pass to
the function

The function returns expectation, a row vector of scalars of the same length
as scores, giving the scaled values of each member of the population. The
sum of the entries of expectation must equal nParents.

Selection Options

Selection options specify how the genetic algorithm chooses parents for the
next generation. You can specify the function the algorithm uses in the
Selection function (SelectionFcn) field in the Selection options pane. The
options are

® Stochastic uniform (@selectionstochunif) — The default selection
function, Stochastic uniform, lays out a line in which each parent
corresponds to a section of the line of length proportional to its scaled value.
The algorithm moves along the line in steps of equal size. At each step, the
algorithm allocates a parent from the section it lands on. The first step is a
uniform random number less than the step size.

6-8

Genetic Algorithm Options

® Remainder (@selectionremainder) — Remainder selection assigns parents
deterministically from the integer part of each individual’s scaled value and
then uses roulette selection on the remaining fractional part. For example, if
the scaled value of an individual is 2.3, that individual is listed twice as a
parent because the integer part is 2. After parents have been assigned
according to the integer parts of the scaled values, the rest of the parents are
chosen stochastically. The probability that a parent is chosen in this step is
proportional to the fractional part of its scaled value.

® Uniform (@selectionuniform) — Uniform selection chooses parents using
the expectations and number of parents. Uniform selection is useful for
debugging and testing, but is not a very effective search strategy.

® Roulette (@selectionroulette) — Roulette selection chooses parents by
simulating a roulette wheel, in which the area of the section of the wheel
corresponding to an individual is proportional to the individual’s
expectation. The algorithm uses a random number to select one of the
sections with a probability equal to its area.

® Tournament (@selectiontournament) — Tournament selection chooses each
parent by choosing Tournament size players at random and then choosing
the best individual out of that set to be a parent. Tournament size must be
at least 2. The default value of Tournament size is 4.
To override the default value of Tournament size at the command line, use
the syntax

options = gaoptimset('SelectionFcn', {@selecttournament, size})

where size is the Tournament size.

® Customenables you to write your own selection function. If your function has
no input arguments, enter it in the text box in the form @myfun. If your
function does have input arguments, enter it as a cell array of the form
{@myfun, P1, P2, ...}, where P1, P2, ... are the input arguments. Your
selection function must have the following calling syntax:

function parents = myfun(expectation, nParents, options, P1, P2,

)

The input arguments to the function are

= expectation — Expected number of children for each member of the
population

6-9

6 Function Reference

= nParents — Number of parents to select
= options — Genetic algorithm options structure

= P1, P2,...— Additional input arguments, if any, that you want to pass
to the function

The function returns parents, a row vector of length nParents containing
the indices of the parents that you select

Reproduction Options

Reproduction options specify how the genetic algorithm creates children for the
next generation.

Elite count (ELiteCount) specifies the number of individuals that are
guaranteed to survive to the next generation. Set Elite count to be a positive
integer less than or equal to the population size. The default value is 2.

Crossover fraction (CrossoverFraction) specifies the fraction of the next
generation, other than elite children, that are produced by crossover. Set
Crossover fraction to be a fraction between 0 and 1, either by entering the
fraction in the text box or moving the slider. The default value is 0. 8.

Mutation Options

Mutation options specify how the genetic algorithm makes small random
changes in the individuals in the population to create mutation children.
Mutation provides genetic diversity and enable the genetic algorithm to search
a broader space. You can specify the mutation function in the Mutation
function (MutationFcn) field in the Mutation options pane. You can choose
from the following functions:

® Gaussian (mutationgaussian) — The default mutation function, Gaussian,
adds a random number taken from a Gaussian distribution with mean 0 to
each entry of the parent vector. The variance of this distribution is
determined by the parameters Scale and Shrink, which are displayed when
you select Gaussian, and by the Initial range setting in the Population
options.

= The Scale parameter determines the variance at the first generation. If
you set Initial range to be a 2-by-1 vector v, the initial variance is the

6-10

Genetic Algorithm Options

same at all coordinates of the parent vector, and is given by
Scale* (v(2) - v(1)).
If you set Initial range to be a vector v with two rows and Number of
variables columns, the initial variance at coordinate i of the parent vector
is given by Scale* (v (i,2) - v(i,1)).

= The Shrink parameter controls how the variance shrinks as generations
go by. If you set Initial range to be a 2-by-1 vector, the variance at the kth
generation, vary, is the same at all coordinates of the parent vector, and is
given by the recursive formula

vark = vark7 1 (1 — Shrink - mfatTon_s)

If you set Initial range to be a vector with two rows and Number of
variables columns, the variance at coordinate i of the parent vector at the
kth generation, var; ;, is given by the recursive formula

: s)
var: = var: 1 — Shrink -
i,k i,k-1 (! Generation

The default values of Seale and Shrink are 0.5 and 0.75, respectively.

If you set Shrink to 1, the algorithm shrinks the variance in each coordinate
linearly until it reaches 0 at the last generation is reached. A negative value
of Shrink causes the variance to grow.

To override the default values of Scale and Shrink at the command line, use
the syntax

options = gaoptimset('MutationFcn', {@mutationgaussian, scale,
shrink})

Uniform (mutationuniform) — Uniform mutation is a two-step process.
First, the algorithm selects a fraction of the vector entries of an individual
for mutation, where each entry has a probability Rate of being mutated. The
default value of Rate is 0.01. In the second step, the algorithm replaces each
selected entry by a random number selected uniformly from the range for
that entry.

To override the default value of Rate at the command line, use the syntax
options = gaoptimset('MutationFcn', {@mutationuniform, rate})

6-11

6 Function Reference

® Customenables you to write your own mutation function. If your function has
no input arguments, enter it in the text box in the form emyfun. If your
function does have input arguments, enter it as a cell array of the form
{emyfun, P1, P2, ...}, whereP1, P2, ... arethe input arguments. Your
mutation function must have this calling syntax:

function mutationChildren = myfun(parents, options, nvars,
FitnessFcn, state, thisScore, thisPopulation, P1, P2, ...)

The arguments to the function are

= parents — Row vector of parents chosen by the selection function
= options — Options structure

= nvars — Number of variables

= FitnessFcn — Fitness function

= state — State structure. See “The State Structure” on page 6-18.
= thisScore — Vector of scores of the current population

= thisPopulation — Matrix of individuals in the current population

= P1, P2,...— Additional input arguments, if any, that you want to pass
to the function

The function returns mutationChildren — the mutated offspring — as a
matrix whose rows correspond to the children. The number of columns of the
matrix is Number of variables.

Crossover Options

Crossover options specify how the genetic algorithm combines two individuals,
or parents, to form a crossover child for the next generation.

Crossover function (CrossoverFcn) specifies the function that performs the
crossover. You can choose from the following functions:

e Scattered (@crossoverscattered), the default crossover function, creates a
random binary vector and selects the genes where the vector is a 1 from the
first parent, and the genes where the vector is a 0 from the second parent,
and combines the genes to form the child. For example, if p1 and p2 are the
parents

pit = [abcdefgh]

6-12

Genetic Algorithm Options

p2 = [1 234567 8]

and the binary vectoris [1 10 0 1 0 0 0], the function returns the following
child:

childi = [a b 3 4 e 6 7 8]

Single point (@crossoversinglepoint) chooses a random integer n
between 1 and Number of variables and then

= Selects vector entries numbered less than or equal to n from the first
parent.

= Selects vector entries numbered greater than n from the second parent.
= Concatenates these entries to form a child vector.

For example, if p1 and p2 are the parents
pt = [abcdefgh]
p2 = [1 234567 8]
and the crossover point is 3, the function returns the following child.
child = [a bc 456 7 8]

Two point (@crossovertwopoint) selects two random integers m and n
between 1 and Number of variables. The function selects

= Vector entries numbered less than or equal to m from the first parent
= Vector entries numbered from m+1 to n, inclusive, from the second parent
= Vector entries numbered greater than n from the first parent.

The algorithm then concatenates these genes to form a single gene. For
example, if p1 and p2 are the parents

pi = [abcdefghl]

p2 = [1 23 456 7 8]

and the crossover points are 3 and 6, the function returns the following child.
child = [a b c 45 6 g h]

Intermediate (@crossoverintermediate) creates children by taking a
weighted average of the parents. You can specify the weights by a single
parameter, R, which can be a scalar or a row vector of length Number of
variables. The default is a vector of all 1’s. The function creates the child
from parent1 and parent2 using the following formula.

6-13

6 Function Reference

child = parent1 + rand * Ratio * (parent2 - parentt)

If all the entries of Ratio lie in the range [0, 1], the children produced are
within the hypercube defined by placing the parents at opposite vertices. If
Ratio is not in that range, the children might lie outside the hypercube. If
Ratio is a scalar, then all the children lie on the line between the parents.

To override the default value of Ratio at the command line, use the syntax

options = gaoptimset('CrossoverFcn', {@crossoverintermediate,
ratio});

® Heuristic (@crossoverheuristic) returns a child that lies on the line
containing the two parents, a small distance away from the parent with the
better fitness value in the direction away from the parent with the worse
fitness value. You can specify how far the child is from the better parent by
the parameter Ratio , which appears when you select Heuristic. The default
value of Ratio is 1.2. If parent1 and parent2 are the parents, and parent1
has the better fitness value, the function returns the child

child = parent2 + R * (parenti - parent2);

To override the default value of Ratio at the command line, use the syntax
options=gaoptimset('CrossoverFcn',{@crossoverheuristic,ratio});

® Customenables you to write your own crossover function. If your function has
no input arguments, enter it in the text box in the form @myfun. If your
function does have input arguments, enter it as a cell array of the form
{emyfun, P1, P2,...}, where P1, P2,... are the input arguments. Your
selection function must have this calling syntax.

xoverKids = myfun(parents, options, nvars, FitnessFcn,
unused,thisPopulation)

The arguments to the function are

= parents — Row vector of parents chosen by the selection function
= options — options structure

= nvars — Number of variables

= FitnessFcn — Fitness function

= unused — Place holder that is not used

6-14

Genetic Algorithm Options

= thisPopulation — Matrix representing the current population. The
number of rows of the matrix is Population size and the number of
columns is Number of variables.

= P1, P2, ...— Additional input arguments, if any, that you want to pass
to the function

The function returns xoverkKids — the crossover offspring — as a matrix
whose rows correspond to the children. The number of columns of the matrix
is Number of variables.

Migration Options

Migration options specify how individuals move between subpopulations.
Migration occurs if you set Population size to be a vector of length greater
than 1. When migration occurs, the best individuals from one subpopulation
replace the worst individuals in another subpopulation. Individuals that
migrate from one subpopulation to another are copied. They are not removed
from the source subpopulation.

You can control how migration occurs by the following three fields in the
Migration options pane:

¢ Direction (MigrationDirection) — Migration can take place in one or both
directions.

= Ifyou set Direction to Forward (' forward'), migration takes place toward
the last subpopulation. That is the nth subpopulation migrates into the
(n+1)th subpopulation.

= Ifyou set Direction to Both ('both'), the nth subpopulation migrates into
both the (n-1)th and the (n+1)th subpopulation.

Migration wraps at the ends of the subpopulations. That is, the last
subpopulation migrates into the first, and the first may migrate into the last.
To prevent wrapping, specify a subpopulation of size 0 by adding an entry of
0 at the end of the population size vector that you enter in Population size.

¢ Interval controls how many generation pass between migrations. For
example, if you set Interval to 20, migration takes place every 20
generations.

¢ Fraction controls how many individuals move between subpopulations.
Fraction specifies the fraction of the smaller of the two subpopulations that
moves. For example, if individuals migrate from a subpopulation of 50

6-15

6 Function Reference

6-16

individuals into a subpopulation of 100 individuals and you set Fraction to
0.1, the number of individuals that migrate is 0.1 * 50 = 5.

Output Function Options
Output functions return output from the genetic algorithm to the command
line at each generation.

¢ History to new window (@gaoutputgen) displays the history of points

computed by the algorithm in a new window at each multiple of Interval
iterations.

® Custom enables you to write your own output function.

To specify the History to new window output function at the command line,
set options as follows:

options = gaoptimset('OutputFcns', @gaoutputgen)

Structure of the Output Function

The function ga passes the following input arguments to the output function at
each generation:

® options — Options structure

® state — Structure containing information about the current population.
“The State Structure” on page 6-18 describes this structure.

e flag — String indicating the current status of the algorithm as follows:

= 'init' — Initial stage
= 'iter' — Algorithm running
= 'done' — Algorithm terminated

The output function returns the following arguments to ga:
® state

® optnew — Options structure modified by the output function. This argument
is optional.

® optchanged — Flag indicating changes to options in optnew

Genetic Algorithm Options

Stopping Criteria Options

Stopping criteria determine what causes the algorithm to terminate. You can
specify the following options:

® Generations (Generations) specifies the maximum number of iterations the
genetic algorithm will perform. The default is 100.

® Time limit (TimeLimit) specifies the maximum time in seconds the genetic
algorithm runs before stopping.

¢ Fitness limit (FitnessLimit) — The algorithm stops if the best fitness value
is less than or equal to the value of Fitness limit.

¢ Stall generations (StallGenLimit) — The algorithm stops if there is no
improvement in the best fitness value for the number of generations
specified by Stall generations.

o Stall time (StallTimeLimit) — The algorithm stops if there is no

improvement in the best fitness value for an interval of time in seconds
specified by Stall time.

Hybrid Function Option
A hybrid function is another minimization function that runs after the genetic

algorithm terminates. You can specify a hybrid function in Hybrid function
options. The choices are

® None
e fminsearch — Uses the MATLAB function fminsearch
® patternsearch — Uses a pattern search

e fminunc — Uses the Optimization Toolbox function fminunc

Vectorize Option

The vectorize option specifies whether the computation of the fitness function
is vectorized. When you set Fitness function is vectorized to 0ff, the genetic
algorithm computes the fitness function values of the new generation in a loop.
When you set Fitness function is vectorized to On, the algorithm computes
the fitness function values of a new generation with one call to the fitness
function, which is faster than computing the values in a loop. However, to use
this option, your fitness function must be able to accept input matrices with an
arbitrary number of rows.

6-17

6 Function Reference

6-18

The State Structure

The genetic algorithm uses an internal structure, state, to keep track of
information about the population. The state structure is useful if you are

writing a custom function, for example, a custom selection function. The state
structure contains the following fields:

® state.Population — Matrix whose rows are the individuals in the current
population

® state.Score — Column vector of scores of the individuals in the current
population

® state.Generation — Number of the current generation

Pattern Search Options

Pattern Search Options

This section describes the options for pattern search. There are two ways to
specify the options, depending on whether you are using the Pattern Search
Tool or calling the function patternsearch at the command line:

¢ If you are using the Pattern Search Tool (psearchtool), you specify the
options by selecting an option from a drop-down list or by entering the value
of the option in the text field.

¢ If you are calling patternsearch from the command line, you specify the
options by creating an options structure using the function psoptimset, as
follows:

options = psoptimset('Parami', valuel, 'Param2', value2, ...);
You can identify an option in one of two ways:

¢ By its label, as it appears in the Pattern Search Tool

¢ By its field name in the options structure
For example:

¢ Poll method refers to the label of the option in the Pattern Search Tool.
® PollMethod refers to the corresponding field of the options structure.

The options are divided into the following categories:

¢ “Plot Options” on page 6-4

® “Poll Options” on page 6-20

¢ “Search Options” on page 6-22

¢ “Mesh Options” on page 6-24

® “Cache Options” on page 6-25

® “Stopping Criteria” on page 6-25

® “Output Function Options” on page 6-26

¢ “Display to Command Window Options” on page 6-26
® “Vectorize Option” on page 6-27

6-19

6 Function Reference

6-20

Plot Options

Plot functions plot output from the pattern search at each iteration. The
following plots are available:

¢ Best function value (@psplotbestf) plots the best objective function value
at each multiple of Interval iterations.

® Function count (@psplotfuncount) plots the number of function
evaluations at each multiple of Interval iterations.

® Mesh size (@psplotmeshsize) plots the mesh size at each multiple of
Interval iterations.

® Best point (@psplotbestx) plots the current best point.

® Custom enables you to use your own plot function.

Poll Options
Poll options control how the pattern search polls the mesh points at each
iteration.

Poll method (PollMethod) specifies the pattern the algorithm uses to create
the mesh. There are two patterns:

® The default pattern, Positive basis 2N, consists of the following 2N vectors,
where N is the number of independent variables for the objective function.

[100...0]
[010...0]

[00.(.)'...1]
[-1 00...0]
[0 -10...0]

[000...-1]

For example, if objective function has three independent variables, the
pattern consists of the following six vectors.

Pattern Search Options

(100
[010]
[00 1]
[F100]
[0-10]
[00-1]

® The Positive basis NP1 pattern consisting of the following N + 1 vectors.

[100...0]
[010...0]
wd&“l]
[-1-1-1..-1]

For example, if objective function has three independent variables, the
pattern consists of the following four vectors.

[100]
[010
[00 1]
[1-1-1]

Complete poll (CompletePoll) specifies whether all the points in the current
mesh must be polled at each iteration. Complete Poll can have the values On
or Off.

¢ If you set Complete poll to On, the algorithm polls all the points in the mesh
at each iteration and chooses the point with the smallest objective function
value as the current point at the next iteration.

6-21

6 Function Reference

¢ If you set Complete poll to 0ff, the default value, the algorithm stops the
poll as soon as it finds a point whose objective function value is less than that
of the current point and chooses that point as the current point at the next
iteration.

Polling order (PollingOrder) specifies the order in which the algorithm
searches the points in the current mesh. The options are

e Random — The polling order is random.

® Success — The first search direction at each iteration is the direction in
which the algorithm found the best point at the previous iteration. After the
first point, the algorithm polls the mesh points in the same order as
Consecutive.

® Consecutive — The algorithm polls the mesh points in consecutive order,
that is, the order of the pattern vectors as described in Poll method.

Search Options

Search options specify an optional search that the algorithm can perform at
each iteration prior to the polling. If the search returns a point that improves
the objective function, the algorithm uses that point at the next iteration and
omits the polling.

Complete search (CompleteSearch) only applies when you set Search
method to Positive basis Np1, Positive basis 2N, or Latin hypercube.
Complete search can have the values On or Off.

For Positive basis Np1 or Positive basis 2N, Complete search has the
same meaning as the poll option Complete poll.

Search method (SearchMethod) specifies the method of the search. The
options are
® None ([]) specifies no search (the default).

® Positive basis Np1 ('PositiveBasisNp1') specifies a pattern search using
the Positive Basis Np1 option for Poll method.

® Positive basis 2N ('PositiveBasis2N') specifies a pattern search using
the Positive Basis 2N option for Poll method.

® Genetic Algorithm (@searchga) specifies a search using the genetic
algorithm. If you select Genetic Algorithm, two other options appear:

6-22

Pattern Search Options

= Iteration limit — Positive integer specifying the number of iterations of
the pattern search for which the genetic algorithm search is performed.

= Options — Options structure for the genetic algorithm

® | atin hypercube (@searchlhs) specifies a Latin hypercube search. The way
the search is performed depends on the setting for Complete search:

= If you set Complete search to On, the algorithm polls all the points that
are randomly generated at each iteration by the latin hypercube search
and chooses the one with the smallest objective function value.

= Ifyou set Complete search to 0ff, the algorithm stops the poll as soon as
it finds one of the randomly generated points whose objective function
value is less than that of the current point, and chooses that point for the
next iteration.

If you select Latin hypercube, two other options appear:

= Iteration limit — Positive integer specifying the number of iterations of
the pattern search for which the Latin hypercube search is performed.

= Design level — A positive integer specifying the design level. The number
of points searched equals the Design level multiplied by the number of
independent variables for the objective function.

® Nelder-Mead (@searchneldermead) specifies a search using fminsearch,

which uses the Nelder-Mead algorithm. If you select Nelder -Mead, two other

options appear:

= Iteration limit — Positive integer specifying the number of iterations of
the pattern search for which the Neldermead search is performed

= Options — Options structure for the function fminsearch. You can create
the options structure using optimset.

® Custom enables you to write your own search function.

Note If you set Search method to Genetic algorithm or Nelder-Mead, we
recommend that you leave Iteration limit set to the default value 1, as
performing these searches more than once is not likely to improve results.

6-23

6 Function Reference

Mesh Options

Mesh options control the mesh that the pattern search uses. The following
options are available.

Initial size (InitialMeshSize) specifies the size of the initial mesh, which is
the length of the shortest vector from the initial point to a mesh point. Initial
size should be a positive scalar. The default is 1.0.

Max size (MaxMeshSize) specifies a maximum size for the mesh. When the
maximum size is reached, the mesh size does not increase after a successful
iteration. Max size must be a positive scalar. The default value is Inf.

Accelerator (MeshAccelerator) specifies whether the Contraction factor is
multiplied by 0.5 after each unsuccessful iteration. Accelerator can have the
values On or Off, the default.

Rotate (MeshRotate) specifies whether the mesh vectors are “flipped” —
multiplied by -1 — when the mesh size is less than a small value. Rotate is only
applied when Poll method is set to Positive basis Np1 and Rotate is set to
on, the default.

Note Changing the setting of Rotate has no effect on the poll when Poll
method is set to Positive basis 2N.

Scale (ScaleMesh) specifies whether the algorithm scales the mesh points by
multiplying the pattern vectors by constants. Scale can have the values Off or
on, the default.

Expansion factor (MeshExpansion) specifies the factor by which the mesh
size is increased after a successful poll. The default value is 2.0, which means
that the size of the mesh is multiplied by 2. 0 after a successful poll. Expansion
factor must be a positive scalar.

Contraction factor (MeshContraction) specifies the factor by which the mesh
size is decreased after an unsuccessful poll. The default value is 0.5, which
means that the size of the mesh is multiplied by 0.5 after an unsuccessful poll.
Contraction factor must be a positive scalar.

6-24

Pattern Search Options

Cache Options

The pattern search algorithm can keep a record of the points it has already
polled, so that it does not have to poll the same point more than once. If the
objective function requires a relatively long time to compute, the cache option
can speed up the algorithm. The memory allocated for recording the points is
called the cache. This option should only be used for deterministic objective
functions, but not for stochastic ones.

Cache (Cache) specifies whether a cache is used. The options are On and Off,
the default. When you set Cache to On, the algorithm does not evaluate the
objective function at any mesh points that are within Tolerance of a point in
the cache.

Tolerance (CacheTol) specifies how close a mesh point must be to a point in
the cache for the algorithm to omit polling it. Tolerance must be a positive
scalar. The default value is eps.

Size (CacheSize) specifies the size of the cache. Size must be a positive scalar.
The default value is 1e4.

Stopping Criteria

Stopping criteria determine what causes the pattern search algorithm to stop.
Pattern search uses the following criteria:

Mesh tolerance (TolMesh) specifies the minimum tolerance for mesh size. The
algorithm stops if the mesh size becomes smaller than Mesh tolerance. The
default value is 1e-6.

Max iteration (MaxIteration) specifies the maximum number of iterations the
algorithm performs. The algorithm stops if the number of iterations reaches
Max iteration. You can select either

¢ 100*numberofvariables — Maximum number of iterations is 100 times the
number of independent variables (the default).
® Specify — A positive integer for the maximum number of iterations

Max function evaluations (MaxFunEval) specifies the maximum number of
evaluations of the fitness function. The algorithm stops if the number of
function evaluations reaches Max function evaluations. You can select either

* 2000*numberofvariables — Maximum number of function evaluations is
2000 times the number of independent variables.

6-25

6 Function Reference

® Specify — A positive integer for the maximum number of function
evaluations

Bind tolerance (TolBind) specifies the minimum tolerance for the distance
from the current point to the boundary of the feasible region. Bind tolerance
specifies when a linear constraint is active. It is not a stopping criterion. The
default value is 1e-3.

X tolerance (TolX) specifies the minimum distance between the current points
at two consecutive iterations. The algorithm stops if the distance between two
consecutive points is less than X tolerance. The default value is 1e-6.

Function tolerance (TolFun) specifies the minimum tolerance for the objective
function. The algorithm stops when the value of the objective function at the
current point is less than Function tolerance. The default value is 1e-6.

Output Function Options
Output functions are functions that the pattern search algorithm calls at each
iteration. The following options are available:

¢ History to new window (@psoutputhistory) displays the history of points
computed by the algorithm in the MATLAB Command Window at each
multiple of Interval iterations.

® Custom enables you to write your own output function.

To specify the History to a new window output function at the command line,
set options as follows.

options = psoptimset('OutputFcns', @psoutputhistory)

Display to Command Window Options

Level of display ('Display') specifies how much information is displayed at
the command line while the pattern search is running. The available options
are

e Off ('off') — Only the final answer is displayed.

® Tterative ('iter') — Information is displayed for each iteration.

® Diagnose ('diagnose') — Information is displayed if the algorithm fails to
converge.

6-26

Pattern Search Options

e Final ('final') — The outcome of the pattern search (successful or
unsuccessful), the reason for stopping, and the final point.

Both Iterative and Diagnose display the following information:

® Iter — Iteration number

® FunEval — Cumulative number of function evaluations
® MeshSize — Current mesh size

® Funval — Objective function value of the current point
® Method — Outcome of the current poll

The default value of Level of display is

e Off in the Pattern Search Tool
e 'final' in an options structure created using psoptimset

Vectorize Option

The vectorize option specifies whether the computation of the objective
function is vectorized. When you set Objective function is vectorized
('Vectorize') to Off ('off'), the algorithm computes the objective function
values of the mesh points in a loop, calling the objective function with exactly
one point each time through the loop. On the other hand, when you set
Objective function is vectorized to On ('on'), the pattern search algorithm
computes the objective function values of all mesh points with a single call to
the objective function, which is faster than computing them in a loop. However,
to use this option, your objective function must be able to accept input matrices
with an arbitrary number of rows.

6-27

6 Function Reference

Functions — Alphabetical List

This section contains function reference pages listed alphabetically. The
reference pages contain detailed descriptions of the Genetic Algorithm and
Direct Search Toolbox functions.

6-28

ga

Purpose

Syntax

Description

Find the minimum of a function using the genetic algorithm

x = ga(fitnessfun, nvars)

x = ga(fitnessfun, nvars, options)

X = ga(problem)

[x, fval] = ga(...)

[x, fval, reason] = ga(...)

[x, fval, reason, output] = ga(...)

[x, fval, reason, output, population] = ga(...)

[x, fval, reason, output, population, scores] = ga(...)

ga implements the genetic algorithm at the command line to minimize an
objective function.

x = ga(fitnessfun, nvars) applies the genetic algorithm to an optimization
problem, where fitnessfun is the objective function to minimize and nvars is
the length of the solution vector x, the best individual found.

X = ga(fitnessfun, nvars, options) applies the genetic algorithm to an
optimization problem, using the parameters in the options structure.

x = ga(problem) finds the minimum for problem, a structure that has three
fields:

® fitnessfcn — Fitness function
® nvars — Number of independent variables for the fitness function

® options — Options structure created with gaoptimset
[x, fval] = ga(...) returns fval, the value of the fitness function at x.

[x, fval, reason] = ga(...) returns reason, a string containing the reason
the algorithm stops.

[x, fval, reason, output] = ga(...) returns output, a structure that
contains output from each generation and other information about the
performance of the algorithm. The output structure contains the following
fields:

® randstate — The state of rand, the MATLAB random number generator,
just before the algorithm started.

6-29

¢ randnstate — The state of randn the MATLAB normal random number
generator, just before the algorithm started. You can use the values of
randstate and randnstate to reproduce the output of ga. See “Reproducing
Your Results” on page 4-25.

® generations — The number of generations computed
e funccount — The number of evaluations of the fitness function

® message — The reason the algorithm terminated. This message is the same
as the output argument reason.

[x, fval, reason, output, population] = ga(...) returns matrix
population, whose rows are the final population.

[x, fval, reason, output, population, scores] = ga(...) returns
scores, the scores of the final population.

Example [x fval, reason] = ga(@rastriginsFcn, 10)
X -

Columns 1 through 7
0.9977 0.9598 0.0085 0.0097 -0.0274 -0.0173 0.9650
Columns 8 through 10
-0.0021 -0.0210 0.0065
fval =
3.7456
reason =

generations

See Also gaoptimset, gatool

6-30

gaoptimget

Purpose Get values of a genetic algorithm options structure
Syni‘ax val = gaoptimget(options, 'name')
Description val = gaoptimget(options, 'name') returns the value of the parameter name

from the genetic algorithm options structure options.
gaoptimget(options, 'name') returns an empty matrix [] if the value of
name is not specified in options. It is only necessary to type enough leading
characters of name to uniquely identify it. gaoptimget ignores case in
parameter names.

See Also ga, gaoptimset, gatool

6-31

gaoptimset

Purpose

Syntax

Description

Options

6-32

Create a genetic algorithm options structure

options = gaoptimset

gaoptimset
options = gaoptimset('parami',valuel, 'param2',value2,...)
options = gaoptimset(oldopts, 'parami',valuel,...)

options = gaoptimset(oldopts,newopts)

options = gaoptimset (with no input arguments) creates a structure called
options that contains the options, or parameters, for the genetic algorithm and
sets parameters to their default values.

gaoptimset with no input or output arguments displays a complete list of
parameters with their valid values.

options = gaoptimset('parami',valuel, 'param2',value2,...) creates a
structure options and sets the value of 'param1' to valuei, 'param2' to
value2, and so on. Any unspecified parameters are set to their default values.
It is sufficient to type only enough leading characters to define the parameter
name uniquely. Case is ignored for parameter names.

options = gaoptimset(oldopts, 'parami',valuel,...) creates a copy of
oldopts, modifying the specified parameters with the specified values.

options = gaoptimset(oldopts,newopts) combines an existing options
structure, oldopts, with a new options structure, newopts. Any parameters in
newopts with nonempty values overwrite the corresponding old parameters in
oldopts.

The following table lists the options you can set with gaoptimset. See “Genetic
Algorithm Options” on page 6-3 for a complete description of these options and
their values. Values in {} denote the default value. You can also view the
optimization parameters and defaults by typing gaoptimset at the command
line.

gaoptimset

Option Description Values
CreationFcn Handle to the function {@gacreationuniform}
that creates the initial
population
CrossoverFraction The fraction of the Positive scalar | {0.8}
population at the next
generation, not
including elite
children, that is
created by the
crossover function
CrossoverFcn Handle to the function @crossoverheuristic
that the algorithm {@crossoverscattered}
uses to create @crossoverintermediate
. @crossoversinglepoint
crossover children X
@crossovertwopoint
EliteCount Positive integer Positive integer | {2}
specifying how many
individuals in the
current generation are
guaranteed to survive
to the next generation
FitnessLimit Scalar. If the fitness Scalar | {-Inf}
function attains the
value of FitnessLimit,
the algorithm halts.
FitnessScalingFcn Handle to the function @fitscalinggoldberg
that scales the values {@fitscalingrank}
of the fitness function efitscalingprop
@fitscalingtop

6-33

gaoptimset

6-34

Option Description Values
Generations Positive integer Positive integer | {100}
specifying the
maximum number of
iterations before the
algorithm halts
PopInitRange Matrix or vector Matrix or vector | [0;1]
specifying the range of
the individuals in the
initial population
PopulationType String describing the 'bitstring' | 'custom’
data type of the | {'doublevector'}
population
HybridFcn Handle to a function Function handle | {[]1}
that continues the
optimization after ga
terminates
InitialPopulation Initial population Positive scalar | {[]}
InitialScores Initial scores Column vector | {[]1}
MigrationDirection Direction of migration 'both' | {'forward'}
MigrationFraction Scalar between 0 and 1~ Scalar | {0.2}

specifying the fraction
of individuals in each
subpopulation that
migrates to a different
subpopulation

gaoptimset

Option Description Values
MigrationInterval Positive integer Positive integer | {20}
specifying the number
of generations that
take place between
migrations of
individuals between
subpopulations
MutationFcn Handle to the function @mutationuniform
that produces {@mutationgaussian}
mutation children
OutputFcns Array of handles to Array | {[1}
functions that ga calls
at each iteration.
OutputInterval Positive integer Positive integer | {1}
specifying the number
of generations between
consecutive calls to the
output functions
PlotFcns Array of handles to @gaplotbestf
functions that plot @gaplotbestgenome
data computed by the @gaplotdistance
algorithm @gaplotexpectation
@gaplotgeneology
@gaplotselection
@gaplotrange
@gaplotscorediversity
@gaplotscores
@gaplotstopping | {[]}
PlotInterval Positive integer Positive integer | {1}

specifying the number
of generations between
consecutive calls to the
plot functions

6-35

gaoptimset

Option Description Values
PopulationSize Size of the population Positive integer | {20}
SelectionFcn Handle to the function @selectiongoldberg

that selects parents of ~ @selectionrandom
crossover and {@selectionstochunif}

. . @selectionroulette
mutation children)
@selectiontournament

StallLimitG Positive integer. The Positive integer | {50}
algorithm stops if
there is no
improvement in the
objective function for
StallLimitG
consecutive
generations.

StallLimitS Positive scalar. The Positive scalar | {20}
algorithm stops if
there is no
improvement in the
objective function for
StalllLimit$S seconds.

TimeLimit Positive scalar. The Positive scalar | {30}
algorithm stops after
running for TimeLimit
seconds.

Vectorized String specifying ‘on' | {'off'}
whether the
computation of the
fitness function is
vectorized

See Also gaoptimget, gatool

6-36

gatool

Purpose
Syntax

Description

Open the Genetic Algorithm Tool

gatool

gatool opens the Genetic Algorithm Tool, a graphical user interface (GUI) to
the genetic algorithm, as shown in the figure below.

<} Genetic Algorithm Tool 10l =|
File Help
Fitness function: I Options: ==
Mumber of variables: | = Population
Plot Fopulation type: |D0ub|e Wector LI
Flot interval: |1 Fopulation size: |20
[Bestfitness [Bestindividual [Distance Creation function: {Unifarm |
[Expectation [| Genealogy [Range
Score diversi Scores Selection
l y [l Initial population: ||]
[Stapping
Initial scores: ||]
[Custom function: I
Initial range: |[D 11
~Run solver

[0 Use randarm states fram previous rin

Fithess scaling

Start | Fause) | Stop |

Selection

Current generation: I

Reproduction

Status and results:

Mutation

Crossover

Migration

Final paint:

Qutput function

Stapping criteria

Hybrid function

Wectorize

Export to Workspace...

6-37

gatool

You can use the Genetic Algorithm Tool to run the genetic algorithm on
optimization problems and display the results. See “Using the Genetic
Algorithm Tool” on page 2-4 for a complete description of the tool.

See Also ga, gaoptimset

6-38

patternsearch

Purpose

Syntax

Description

Find the minimum of a function using a pattern search

x = patternsearch(@fun, xO0)

x = patternsearch(@fun, x0, A, b)

x = patternsearch(@fun, x0, A, b, Aeq, beq)

x = patternsearch(@fun, x0, A, b, Aeq, beq, 1lb, ub)

x = patternsearch(@fun, x0, A, b, Aeq, beq, 1lb, ub, options)
x = patternsearch(problem)

[x, fval] = patternsearch(@fun, x0, ...)

[x, fval, exitflag] = patternsearch(@fun, x0, ...)

[x, fval, exitflag, output] = patternsearch(@fun, x0, ...)

patternsearch finds the minimum of a function using a pattern search.
X = patternsearch(@fun, x0) solves unconstrained problems of the form

minimize f(x)
X
where fun is a MATLAB function that computes the values of the objective
function flx), and x0 is an initial point for the pattern search algorithm. The
function patternsearch accepts the objective function as a function handle of
the form @fun or as an inline function. patternsearch returns a local minimum

x to the objective function. The function fun accepts a vector input and returns
a scalar function value.

X = patternsearch(@fun, x0, A, b) finds a local minimum x to the function
fun, subject to the linear inequality constraints represented in matrix form by

Ax<b

If the problem has m linear inequality constraints and n variables, then

® Ais a matrix of size m-by-n.

® b is a vector of length m.

x = patternsearch(@fun, x0, A, b, Aeq, beq) finds a local minimum x to
the function fun, subject to the constraints

6-39

patternsearch

6-40

Ax<b
Aeq x = beq

where Aeq x = beq represents the linear equality constraints in matrix form. If
the problem has r linear equality constraints and n variables, then

® Aeq is a matrix of size r-by-n.

® beq is a vector of length r.

If there are no inequality constraints, pass empty matrices, [], for A and b.

X = patternsearch(@fun, x0, A, b, Aeq, beq, 1lb, ub) finds a local
minimum X to the function fun subject to the constraints

Ax<b
Aeq x = beq
Ib<x<ub

where [b <x <ub represents lower and upper bounds on the variables. If the
problem has n variables, 1b and ub are vectors of length n. If 1b or ub is empty
(or not provided), it is automatically expanded to - Inf or Inf, respectively. If
there are no inequality or equality constraints, pass empty matrices for A, b,
Aeq and beq.

X = patternsearch(@fun, x0, A, b, Aeq, beq, lb, ub, options) finds a
local minimum x to the function fun, replacing the default optimization
parameters by values in the structure options. You can create options with
the function psoptimset. Pass empty matrices for A, b, Aeq, beq, 1b, ub, and
options to use the default values.

x = patternsearch(problem) finds the minimum for problem, a structure that
has the following fields:

® objective — Objective function

® X0 — Starting point

® Aineq — Matrix for the inequality constraints

® Bineq — Vector for the inequality constraints

® Aeq — Matrix for the equality constraints

® Beq — Vector for the equality constraints

patternsearch

e | B — Lower bound for x

UB — Upper bound for x

® options — Options structure created with psoptimset

® randstate — Optional field to reset the state of rand

® randnstate — Optional field to reset the state of randn

You can create the structure problem by exporting a problem from the Pattern

Search Tool, as described in “Importing and Exporting Options and Problems”
on page 5-10.

Note problem must have all the fields as specified above.

[x, fval] = patternsearch(@fun, x0, ...) returns the value of the
objective function fun at the solution x.

[x, fval, exitflag] = patternsearch(@fun, x0, ...) returns exitflag,
which describes the exit condition of patternsearch. If
® exitflag > 0, patternsearch converged to a solution x.

® exitflag = 0, patternsearch reached the maximum number of function
evaluations or iterations.

® exitflag < 0, patternsearch did not converge to a solution.

[x, fval, exitflag, output] = patternsearch(@fun, x0, ...) returnsa
structure output containing information about the search. The output
structure contains the following fields:

e function — Objective function

® problemtype — Type of problem: unconstrained, bound constrained or linear
constrained

® pollmethod — Polling method

® searchmethod — Search method used, if any

¢ iteration — Total number of iterations

® funccount — Total number of function evaluations

® meshsize — Mesh size at x

6-41

patternsearch

* message — Reason why the algorithm terminated

Example Given the following constraints

1] |2
“12 7Y <2
2 1/*2 |3

0<x,
0<xy

the following code finds the minimum of the function, 1incontest6, that is
provided with the toolbox:

A=111; -12; 21];

b =1[2; 2; 3];

1b = zeros(2,1);

[x, fval, exitflag] = patternsearch(@lincontests6,...
[0 O],A,b,[],[1,1b)

Optimization terminated:

Next Mesh size (9.5367e-007)less than 'TolMesh.'

X -
0.6667 1.3333
fval =
-8.2222
exitflag =
1
See Also psearchtool, psoptimget, psoptimset

6-42

psearchtool

Purpose
Syntax

Description

Open the Pattern Search Tool

psearchtool

psearchtool opens the Pattern Search Tool, a graphical user interface (GUI)

for performing pattern searches, as shown in the figure below.

=k
File Help
Ohjective function: | Options: s
Start paint: | = Poll
Constraints: Poll method: |Positive basis 2N LI
Upper bounds:
i Complete poll: |Off LI
Loweer bounds:
Linear inegualities: A= = Folling arder: |Consecutive LI
Linear equalities: Aeg= heg=
~Plot:
Flotinterval: |1 Search
[Bestfunction value [Mesh size
[Function count [Best paint
Mesh
[Custom function: I
~Run solver
Start | Fause | Stop | Cache

Current iteration: I

Status and results:

Stapping criteria

Qutput

Final paint:

Display to command window

Wectorize

Export to Workspace...

|

6-43

psearchtool

You can use the Pattern Search Tool to run a pattern search on optimization
problems and display the results. See “Using the Pattern Search Tool” on
page 3-3 for a complete description of the tool.

See Also patternsearch, psoptimget, psoptimset

6-44

psoptimget

Purpose
Syntax

Description

See Also

Get values of a pattern search options structure
val = psoptimget(options, 'name')

val = psoptimget(options, 'name') returns the value ofthe parameter name
from the pattern search options structure options.

psoptimget(options, 'name') returns an empty matrix [] if the value of
name is not specified in options. It is only necessary to type enough leading
characters of name to uniquely identify it. psoptimget ignores case in
parameter names.

psoptimset, patternsearch

6-45

psoptimset

Purpose

Syntax

Description

Options

6-46

Create a pattern search options structure

options = psoptimset

psoptimset
options = psoptimset('parami',valuel, 'param2',value2,...)
options = psoptimset(oldopts, 'parami',valuel,...)

options = psoptimset(oldopts,newopts)

options = psoptimset (with no input arguments) creates a structure called
options that contains the options, or parameters, for the pattern search and
sets parameters to their default values.

psoptimset with no input or output arguments displays a complete list of
parameters with their valid values.

options = psoptimset('parami',valuel, 'param2',value2,...) creates a
structure options and sets the value of 'parami’' to valuel, 'param2' to
value2, and so on. Any unspecified parameters are set to their default values.
It is sufficient to type only enough leading characters to define the parameter
name uniquely. Case is ignored for parameter names.

options = psoptimset(oldopts, 'parami',valuel,...) creates a copy of
oldopts, modifying the specified parameters with the specified values.

options = psoptimset(oldopts,newopts) combines an existing options
structure, oldopts, with a new options structure, newopts. Any parameters in
newopts with nonempty values overwrite the corresponding old parameters in
oldopts.

The following table lists the options you can set with psoptimset. See “Pattern
Search Options” on page 6-19 for a complete description of the options and
their values. Values in {} denote the default value. You can also view the
optimization parameters and defaults by typing psoptimset at the command
line.

psoptimset

Option

Cache

CacheSize

CacheTol

CompletePoll

CompleteSearch

Display

InitialMeshSize

Description

With Cache set to 'on",
patternsearch keeps a
history of the mesh
points it polls and does
not poll points close to
them again at
subsequent iterations.
Use this option if
patternsearch runs
slowly because it is
taking a long time to
compute the objective
function.

Size of the history

Positive scalar specifying
how close the current
mesh point must be to a
point in the history in
order for patternsearch
to avoid polling it

Complete poll around
current iterate

Complete poll around
current iterate

Level of display

Initial mesh size for
pattern algorithm

Values

‘on' | {'off'}

Positive scalar | {1e4}

Positive scalar | {1e-10}

‘on' | {'off'}
‘on' | {'off'}
‘off' | 'iter' | 'notify"

{'final'}

Positive scalar | {1.0}

| 'diagnose’ |

6-47

psoptimset

MaxFunEvals

MaxIteration

MaxMeshSize

MeshAccelerator

MeshContraction

MeshExpansion

OutputFcn

PlotFcn

PlotInterval

PollingOrder

PollMethod

ScaleMesh

Maximum number of
objective function
evaluations

Maximum number of
iterations

Maximum mesh size

Accelerate convergence
near a minimum

Mesh contraction factor.
Used when iteration is
unsuccessful.

Mesh expansion factor.
Expands mesh when
iteration is successful.

Specifies a user-defined
function that an
optimization function
calls at each iteration

Specifies plots of output
from the pattern search

Specifies the number of
iterations between
consecutive calls to the
plot functions

Order of poll directions in
pattern search

Polling strategy used in
pattern search

Automatic scaling of
variables

Positive integer |
{2000*numberOfVariables}

Positive integer |
{100*number0fvariables}

Positive scalar | {Inf}

‘on' | {'off'}

Positive scalar | {0.5}

Positive scalar |{2.0}

@psoutputhistory | {none}

@psplotbestf | @psplotmeshsize

@psplotfuncount | {[]}

Positive integer

'Random' | 'Success' | {'Consecutive'}

{'PositiveBasis2N'} |
'PositiveBasisNp1'

{'on'} | 'off'

6-48

psoptimset

SearchMethod

TolBind
TolCon
TolFun
TolMesh
TolX

Vectorized

Type of search used in
pattern search

Binding tolerance
Tolerance on constraints
Tolerance on function
Tolerance on mesh size
Tolerance on variable

Specifies whether
functions are vectorized

'"PositiveBasisNpi1' |

'PositiveBasis2N' | @searchga |
@searchlhs | @searchneldermead| {[]}

Positive scalar | {1e-3}
Positive scalar | {1e-6}
Positive scalar | {1e-6}
Positive scalar | {1e-6}
Positive scalar | {1e-6}

‘on' | {'off'}

See Also

patternsearch, psoptimget

For a detailed description of these options, see “Pattern Search Options” on
page 6-19.

6-49

psoptimset

6-50

A

accelerator, mesh 5-33
algorithm
genetic 2-18
pattern search 3-13

C
cache 5-35

children 2-17
crossover 2-20
elite 2-20
mutation 2-20

crossover 4-39
children 2-20
fraction 4-42

D

direct search 3-2
diversity 2-16, 4-29

E

elite children 2-20

expansion, mesh 5-28

exporting problems
from Genetic Algorithm Tool 4-13
from Pattern Search Tool 5-11

F

fitness function 2-15
vectorizing 4-55
writing M-files for 1-5

fitness scaling 4-34

G

ga 6-29

gaoptimget 6-31

gaoptimset 6-32

gatool 6-37

generation 2-15

genetic algorithm
description of 2-18
options 6-3
overview 2-2
setting options at command line 4-22
stopping criteria for 2-24
using from command line 4-21

Genetic Algorithm Tool 4-2
defining a problem in 4-3
displaying plots 4-7
exporting options and problems from 4-13
importing problems to 4-16
opening 4-2
pausing and stopping 4-5
running 4-4
setting options in 4-11

global and local minima 4-47

H
hybrid function 4-53

importing problems
to Genetic Algorithm Tool 4-16
to Pattern Search Tool 5-13
individual 2-15
initial population 2-19

I1

Index

I-2

M
maximizing 1-6
mesh 3-11
accelerator 5-33
expansion and contraction 5-28
M-files, writing 1-5
minima, global and local 4-47
minimizing 1-6
mutation 4-39
options 4-40

(0

objective function
writing M-file for 1-5
options
genetic algorithm 6-3

P
parent 2-17
pattern 3-10
pattern search
description 3-13
options 6-19
overveiw 3-2

setting options at command line 5-16

using from command line 5-14
Pattern Search Tool 5-2

defining problem in 5-3

displaying plots 5-8

exporting options and problems from 5-11

importing problems to 5-13
opening 5-2

pausing and stopping 5-8
running 5-5

setting options in 5-9

patternsearch 6-39
plots

genetic algorithm 4-7

pattern search 5-8
poll 3-12

complete 5-21

method 5-19
population 2-15

initial 2-19

initial range 4-30

options 4-30

size 4-33
psearchtool 6-43
psoptimget 6-45
psoptimset 6-46

R

Rastrigin’s function 2-6
reproduction 4-39

S

scaling, fitness 4-34
search method 5-25
selection 4-38
setting options
genetic algorithm 4-29
pattern search 5-19
stopping criteria
pattern search 3-18

\'

vectorizing 4-55

	Introducing the Genetic Algorithm and Direct Search Toolbox
	What Is the Genetic Algorithm and Direct Search Toolbox?
	Related Products
	Writing an M-File for the Function You Want to Optimize
	Example — Writing an M-File
	Maximizing Versus Minimizing

	Getting Started with the Genetic Algorithm
	What Is the Genetic Algorithm?
	Using The Genetic Algorithm
	Calling the Function ga at the Command Line
	Using the Genetic Algorithm Tool

	Example: Rastrigin’s Function
	Rastrigin’s Function
	Finding the Minimum of Rastrigin’s Function
	Finding the Minimum from the Command Line
	Displaying Plots

	Some Genetic Algorithm Terminology
	Fitness Functions
	Individuals
	Populations and Generations
	Diversity
	Fitness Values and Best Fitness Values
	Parents and Children

	How the Genetic Algorithm Works
	Outline of the Algorithm
	Initial Population
	Creating the Next Generation
	Plots of Later Generations
	Stopping Conditions for the Algorithm

	Getting Started with Direct Search
	What Is Direct Search?
	Performing a Pattern Search
	Calling patternsearch at the Command Line
	Using the Pattern Search Tool

	Example: Finding the Minimum of a Function
	Objective Function
	Finding the Minimum of the Function
	Plotting the Objective Function Values and Mesh Sizes

	Pattern Search Terminology
	Patterns
	Meshes
	Polling

	How Pattern Search Works
	Iterations 1 and 2: Successful Polls
	Iteration 4: An Unsuccessful Poll
	Displaying the Results at Each Iteration
	More Iterations
	Stopping Conditions for the Pattern Search

	Using the Genetic Algorithm
	Overview of the Genetic Algorithm Tool
	Opening the Genetic Algorithm Tool
	Defining a Problem in the Genetic Algorithm Tool
	Running the Genetic Algorithm
	Pausing and Stopping the Algorithm
	Displaying Plots
	Example — Creating a Custom Plot Function
	Reproducing Your Results
	Setting Options for the Genetic Algorithm
	Importing and Exporting Options and Problems
	Example — Resuming the Genetic Algorithm from the Final Population:
	Generating an M-File

	Using the Genetic Algorithm from the Command Line
	Running the Genetic Algorithm with the Default Options
	Setting Options
	Using Options and Problems from the Genetic Algorithm Tool
	Reproducing Your Results
	Resuming ga from the Final Population of a Previous Run
	Running ga from an M-File

	Setting Options for the Genetic Algorithm
	Diversity
	Population Options
	Fitness Scaling Options
	Selection Options
	Reproduction Options
	Mutation and Crossover
	Mutation Options
	The Crossover Fraction
	Comparing Results for Varying Crossover Fractions
	Example — Global Versus Local Minima
	Setting the Maximum Number of Generations
	Using a Hybrid Function
	Vectorize Option

	Using Direct Search
	Overview of the Pattern Search Tool
	Opening the Pattern Search Tool
	Defining a Problem in the Pattern Search Tool
	Running a Pattern Search
	Example — A Constrained Problem
	Pausing and Stopping the Algorithm
	Displaying Plots
	Setting Options
	Importing and Exporting Options and Problems
	Generate M-File

	Performing a Pattern Search from the Command Line
	Performing a Pattern Search with the Default Options
	Setting Options
	Using Options and Problems from the Pattern Search Tool

	Setting Pattern Search Options
	Poll Method
	Complete Poll
	Using a Search Method
	Mesh Expansion and Contraction
	Mesh Accelerator
	Cache Options
	Setting Tolerances for the Solver

	Function Reference
	Functions — Listed by Category
	Genetic Algorithm
	Direct Search

	Genetic Algorithm Options
	Plot Options
	Population Options
	Fitness Scaling Options
	Selection Options
	Reproduction Options
	Mutation Options
	Crossover Options
	Migration Options
	Output Function Options
	Stopping Criteria Options
	Hybrid Function Option
	Vectorize Option
	The State Structure

	Pattern Search Options
	Plot Options
	Poll Options
	Search Options
	Mesh Options
	Cache Options
	Stopping Criteria
	Output Function Options
	Display to Command Window Options
	Vectorize Option

	Functions — Alphabetical List

	Index

